Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T02:02:20.191Z Has data issue: false hasContentIssue false

A Green's function for diffraction by a rational wedge

Published online by Cambridge University Press:  24 October 2008

A. D. Rawlins
Affiliation:
Department of Mathematics and Statistics, Brunel University, Uxbridge, Middlesex UB8 3PH

Abstract

In this paper we derive an expression for the point source Green's function for the reduced wave equation, valid in an angular sector whose angle is equal to a rational multiple of π. This Green's function can be used to find new expressions for the field produced by the diffraction of a spherical wave by a wedge whose angle can be expressed as a rational multiple of π. The expressions obtained will be in the form of source terms and real integrals representing the diffracted field. The general result obtained is used to derive a new representation for the solution of the problem of diffraction by a mixed hard–soft half plane.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]l'a Bromwich, T. J.. Diffraction of waves by a wedge. Proc. London Math. Soc. (2) 14 (1915), 450463.CrossRefGoogle Scholar
[2]Carslaw, H. S.. Diffraction of waves by a wedge of any angle. Proc. London Math. Soc. (2) 18 (1919), 291307.Google Scholar
[3]Garnir, H. G.. Fonctions de Green de l'opérateur métaharmonique pour les problèmes de Dirichlet et de Neumann posés dans un angle ou un dièdre. Bull. soc. Roy. Sci. Liège 21 (1952), 119140, 207231.Google Scholar
[4]Jacobson, M. I. and Clark, J. G.. Refraction/reflected ray transmission in a divergent channel. J. Acoust. Soc. Amer. 41 (1967), 167176.CrossRefGoogle Scholar
[5]Jacobson, M. I. and Warfield, J. T.. Surface reflected/bottom-reflected ray transmission in a divergent channel. J. Acoust. Soc. Amer. 43 (1968), 1524.CrossRefGoogle Scholar
[6]Macdonald, H. M.. Electric Waves (Cambridge University Press, 1902).Google Scholar
[7]Macdonald, H. M.. A class of diffraction problems. Proc. London Math Soc. (2) 14 (1915), 410427.CrossRefGoogle Scholar
[8]Oberbettinger, F.. On the diffraction and reflection of waves and pulses by wedges and corners. J. Res. Nat. Bur. Standards 61 (1958), 343365.CrossRefGoogle Scholar
[9]Rawlins, A. D.. The solution of a mixed boundary value problem in the theory of diffraction by a semi-infinite plane. Proc. Roy. Soc. London Ser. A 346 (1975), 469484.Google Scholar
[10]Rawlins, A. D.. Plane wave diffraction by a rational wedge. Proc. Roy. Soc. London Ser. A 411 (1987), 265283.Google Scholar
[11]Rawlins, A. D.. Cylindrical wave diffraction by a rational wedge. Proc. Roy. Soc. London Ser. A 411 (1987), 285303.Google Scholar
[12]Sommerfeld, A.. Mathematische Theorie der Diffraktion. Math. Ann. 47 (1896), 317374.CrossRefGoogle Scholar
[13]Sommerfeld, A.. Über verzweigte Potentiale in Raum. Proc. London Math. Soc. (1) 28 (1897), 395429.Google Scholar
[14]Whipple, F. J.. Diffraction by a wedge and kindred problems. Proc. London Math. Soc. (2) 16 (1917), 94111.CrossRefGoogle Scholar