Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T15:51:22.406Z Has data issue: false hasContentIssue false

Gorenstein-duality for one-dimensional almost complete intersections – with an application to non-isolated real singularities

Published online by Cambridge University Press:  16 December 2014

Abstract

We give a generalisation of the duality of a zero-dimensional complete intersection for the case of one-dimensional almost complete intersections, which results in a Gorenstein module M = I/J. In the real case the resulting pairing has a signature, which we show to be constant under flat deformations. In the special case of a non-isolated real hypersurface singularity f, with a one-dimensional critical locus, we relate the signature on the Jacobian module I/Jf to the Euler characteristic of the positive and negative Milnor fibre, generalising the result for isolated critical points. An application to real curves in ℙ2(ℝ) of even degree is given.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[AFN]Aoki, K., Fukuda, T. and Nishimura, T.On the number of branches of the zero locus of a map germ (ℝn, 0) → (ℝn−1, 0). Topology and Computer Science (Atami, 1986), 347363 (Kinokuniya, Tokyo, 1987).Google Scholar
[AGV]Arnold, V. I., Guzein-Zade, S. M. and Varchenko, A. N.Singularities of differentiable maps. Vol. I and II. Monogr. Math. 83 (Birkhäuser, Boston, 1988).CrossRefGoogle Scholar
[A]Arnold, V. I.The index of a singular point of a vector field, the Petrovski–Olenik inequalities and mixed Hodge structures. Funct. Anal. Appl. 12; no.1 (1978), 114.CrossRefGoogle Scholar
[BH]Bruns, W. and Herzog, J.Cohen–Macaulay Rings. Cambridge Studies in Advanced Math. 39 (Cambridge University Press, 1993).Google Scholar
[CE]Cartan, H. and Eilenberg, S.Homological Algebra (Princeton University Press, 1956).Google Scholar
[D]Dutertre, N.On topological invariants associated with a polynomial with isolated critical points. Glasg. Math. J. 46 (2004), no. 2, 323334.CrossRefGoogle Scholar
[DSW]Dimca, A., Saito, M. and Wotzlaw, L.A generalization of the Griffiths theorem on rational integrals II. Michigan Math. J. 58 (2009), no. 3, 603625.CrossRefGoogle Scholar
[E]Eisenbud, D.Commutative Algebra with a View Toward Algebraic Geometry (Springer, Berlin, 1995).Google Scholar
[EG]Ebeling, W. and Gusein-Zade, S. M.Indices of vector fields and 1-forms on singular varieties. In: Global Aspects of Complex Geometry (Springer, Berlin, 2006), 129169.CrossRefGoogle Scholar
[EL]Eisenbud, D. and Levine, H.An algebraic formula for the degree of a C map germ. Ann. Math. 106 (1977), 1944.CrossRefGoogle Scholar
[dJ]de Jong, T.The virtual number of D points. I. Topology 29 (1990), no. 2, 175184.Google Scholar
[dJdJ]de Jong, J. and de Jong, T.The virtual number of D points. II. Topology 29 (1990), no. 2, 185188.Google Scholar
[dJvS1]de Jong, T. and van Straten, D.A deformation theory for nonisolated singularities. Abh. Math. Sem. Univ. Hamburg 60 (1990), 177208.CrossRefGoogle Scholar
[dJvS2]de Jong, T. and van Straten, D.Disentanglements. In Singularity Theory and its Applications, Part I (Coventry, 1988/1989), Lecture Notes in Math. 1462 (Springer, Berlin, 1991), pp. 199211.Google Scholar
[GV]Varchenko, A. N. and Givental, A. B.The period mapping and the intersection form. Funct. Anal. Appl. 16 (1982), no. 2, 720.CrossRefGoogle Scholar
[K]Khimshiashvilli, G. M.On the local degree of a smooth map. Soobshch. Akad. Nauk. GruzSSR. 85 (2) (1977), 309311.Google Scholar
[Ma]Matsumura, H.Commutative Ring Theory (Cambridge Universtiy Press, 1986).Google Scholar
[Mi]Milnor, J.Singular points of complex hypersurfaces. Ann. Math. Stud. 61 (Princeton University Press, 1968).Google Scholar
[MvS]Montaldi, J. and van Straten, D.One-forms on singular curves and the topology of real curve singularities. Topology 29 (1990), no.4, 501510.Google Scholar
[P1]Pellikaan, R.Finite determinacy of functions with nonisolated singularities. Proc. London Math. Soc. (3) 57 (1988), no. 2, 357382.CrossRefGoogle Scholar
[P2]Pellikaan, R.Deformations of hypersurfaces with a one-dimensional singular locus. J. Pure Appl. Algebra 67 (1990), no. 1, 4971.Google Scholar
[P3]Pellikaan, R.Projective resolutions of the quotient of two ideals. Nederl. Akad. Wetensch. Indag. Math. 50 (1988), no. 1, 6584.CrossRefGoogle Scholar
[Sa]Saito, K.The higher residue pairings KF (k) for a family of hypersurface singular points. Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math. 40 (Amer. Math. Soc., Providence, RI, 1983), pp. 441463.Google Scholar
[Si]Siersma, D.Isolated line singularities. Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math. 40 (Amer. Math. Soc., Providence, RI, 1983), pp. 485496.Google Scholar
[vS]van Straten, D.On the Betti numbers of the Milnor fibre of a certain class of hypersurface singularities. In Singularities, Representation of Algebras and Vector Bundles (Lambrecht, 1985), Lecture Notes in Math. 1273 (Springer, Berlin, 1987), pp. 203220.CrossRefGoogle Scholar
[SS]Scheja, G. and Storch, U.Über Spurfunktionen bei vollständigen Durchschnitten. J. Reine Angew. Math. 278/279 (1975), 174189.Google Scholar
[Sz1]Szafraniec, Z.A formula for the Euler characteristic of a real algebraic manifold. Manuscripta Math. 85 (1994), no. 3–4, 345360.Google Scholar
[Sz2]Szafraniec, Z.Topological degree and quadratic forms. J. Pure Appl. Algebra 141 (1999), no. 3, 299314.Google Scholar
[Sz3]Szafraniec, Z.Topological invariants of real Milnor fibres. Manuscripta Math. 110 (2003) 2, 159169.CrossRefGoogle Scholar
[V]Varchenko, A. N.Local residue and the intersection form in vanishing cohomology. Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 1, 3254.Google Scholar
[Wa]Warmt, T. Gorenstein-Dualität und topologische Invarianten von Singularitäten. PhD thesis. Johannes–Gutenberg Universität Mainz (2003).Google Scholar
[We]Weber, H.Lehrbuch der Algebra. Bd. 1 (Verlag Vieweg und Sohn, Braunschweig 1898).Google Scholar