Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T07:24:59.731Z Has data issue: false hasContentIssue false

Generators and relations for metabelian Lie algebras

Published online by Cambridge University Press:  24 October 2008

Jürgen Wisliceny
Affiliation:
Universität Rostock, Aussenstelle Güstrow, Fachbereich Mathematik, Goldberger Str. 12, D-O-2600 Güstrow, Germany
Rainer Zerck
Affiliation:
Cottbuser Platz 7, D-O-1150 Berlin, Germany

Extract

The aim of this paper is to prove an inequality of Golod-Shafarevich type for metabelian Lie algebras and to show that this inequality is best possible up to a constant factor. Investigations of this kind were started in [4] in connection with the solution of the class field tower problem. It was shown that if there is a finite p-group which may be presented as a pro-p-group with d ≥ 2 generators and r relations then the inequality r > ¼(d − 1)2 holds; and Vinberg [8] improved this result by showing

The inequality (1) also holds for presentations of nilpotent Lie algebras (see [6]) (with the exception (d, r) = (2, 1)) and nilpotent associative algebras (see [4, 8, 6]). If the relations have of degree at least m ≥ 3 then more relations are needed. More precisely, Koch [5] has shown that the inequality

holds for finite p-groups, and the corresponding results hold for associative algebras and Lie algebras.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Amayo, R. K. and Stewart, I.. Infinite-dimensional Lie Algebras (Noordhoff, 1974).CrossRefGoogle Scholar
[2]Bahturin, Yu. A.. Identical Relations in Lie Algebras (VNU Science Press, 1987).Google Scholar
[3]Chen, K. T.. Integration in free groups. Ann. of Math. (2) 54 (1951), 147162.CrossRefGoogle Scholar
[4]Golod, E. S. and Shafarevich, I. R.. On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261272.Google Scholar
[5]Koch, H.. Galoissche Theorie der p-Erweiterungen (Deutscher Verlag der Wissenschaften, 1970).CrossRefGoogle Scholar
[6]Koch, H.. Erzeugenden- und Relationenrang für endlich dimensionale nilpotente Liesche Algebren. Algebra i Logika 16 (1977), 364374.Google Scholar
[7]Sauerbier, G.. Zur Konstruktion nilpotenter Lie-Algebren. Wiss. Z. Pädagog. Hochsch. Güstrow 27 (1989), 237246.Google Scholar
[8]Vinberg, E. B.. On the theorem concerning the infinite dimension of an associative algebra. Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 209214.Google Scholar
[9]Wisliceny, J.. Zur Darstellung von pro-p-Gruppen und Lieschen Algebren durch Erzeugende und Relationen. Math. Nachr. 102 (1981), 5778.CrossRefGoogle Scholar
[10]Wisliceny, J.. Konstruktion nilpotenter assoziativer Algebren mit wenig Relationen. Math. Nachr. 147 (1990), 5360.CrossRefGoogle Scholar
[11]Wisliceny, J.. Konstruktion endlich graduierter assoziativer Algebren. In Beitr. Jahrestagung Algebra u. Grenzgebiete, pp. 105110.Google Scholar