Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T11:34:43.422Z Has data issue: false hasContentIssue false

The Gehring–Hayman inequality for quasihyperbolic geodesics

Published online by Cambridge University Press:  24 October 2008

Juha Heinonen
Affiliation:
University of Michigan, Department of Mathematics, Ann Arbor, MI 48109, USA
Steffen Rohde
Affiliation:
University of Michigan, Department of Mathematics, Ann Arbor, MI 48109, USA

Extract

The quasihyperbolic metric in a proper subdomain D of Rn is defined by

where the infimum is taken over all rectifiable arcs γ in D joining x and y. There always exists an arc, called a quasihyperbolic geodesic in D, for which the infimum above is attained. We refer to [3], [4], [16], and [17] for the motivation and basic properties of the quasihyperbolic metric.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Gehring, F. W. and Hayman, W. K.. An inequality in the theory of conformal mapping. J. Math. Pure Appl. (9) 41 (1962), 353361.Google Scholar
[2]Gehring, F. W. and Martio, O.. Quasiextremal distance domains and extension of quasi-conformal mappings. J. Analyse Math. 45 (1985), 181206.CrossRefGoogle Scholar
[3]Gehring, F. W. and Osgood, B. C.. Uniform domains and the quasi-hyperbolic metric. J. Analyse Math. 36 (1979), 5074.CrossRefGoogle Scholar
[4]Gehring, F. W. and Palka, B. P.. Quasiconformally homogeneous domains. J. Analyse Math. 30 (1976), 172199.CrossRefGoogle Scholar
[5]Gehring, F. W. and Väisälä, J.. Hausdorff dimension and quasiconformal mappings. J. London Math. Soc. 6 (1973), 504512.CrossRefGoogle Scholar
[6]Heinonen, J. and Näkki, R.. Quasiconformal distortion on arcs. J. Analyse Math. (to appear).Google Scholar
[7]Pommerenke, Ch.. Uniformly perfect sets and the Poincaré metric. Arch. Math. 32 (1979), 192199.CrossRefGoogle Scholar
[8]Pommerenre, Ch.. Boundary Behaviour of Conformal Maps (Springer-Verlag, 1992).CrossRefGoogle Scholar
[9]Stein, E. M.. Singular Integrals and Differentiability Properties of Functions (Princeton University Press, 1970).Google Scholar
[10]Tukia, P.. A quasiconformal group not isomorphic to a Möbius group. Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 149160.CrossRefGoogle Scholar
[11]Tukia, P. and Väisälä, J.. Lipschitz and quasiconformal approximation and extension. Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), 303342.CrossRefGoogle Scholar
[12]Tukia, P. and Väisälä, J.. Quasiconformal extension from dimension n to n + 1. Ann. of Math. 115 (1982), 331348.Google Scholar
[13]Tukia, P. and Väisälä, J.. Extension of embeddings close to isometries and similarities. Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 153175.CrossRefGoogle Scholar
[14]Väisälä, J.. Lectures on n-dimensional Quasiconformal Mappings. Lecture Notes in Math. 229 (Springer-Verlag, 1971).CrossRefGoogle Scholar
[15]Väisälä, J.. Quasisymmetric embeddings in euclidean spaces. Trans. Amer. Math. Soc. 264 (1981), 191204.Google Scholar
[16]Väisälä, J.. Free quasiconformality in Banach spaces II. Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), 255310.CrossRefGoogle Scholar
[17]Vuorinen, M.. Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math. 1319 (Springer-Verlag, 1988).CrossRefGoogle Scholar