Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T07:26:49.723Z Has data issue: false hasContentIssue false

Finite Bol loops II

Published online by Cambridge University Press:  24 October 2008

R. P. Burn
Affiliation:
Homerton College, Cambridge

Extract

In this paper, we prove that for any odd prime p, there are exactly two non-associative, non-Moufang, (right) Bol loops of order 4p.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bruck, R. H.A survey of binary systems (Springer-Verlag, Berlin, 1958).CrossRefGoogle Scholar
(2)Burn, R. P.Finite Bol loops. Math. Proc. Cambridge Philos. Soc. 84 (1978), 377385.CrossRefGoogle Scholar
(3)Chein, O. and Pflugfelder, H. O.On maps xx n and the isotopy-isomorphy property of Moufang loops. Aeq. Math. 6 (1971), 157161.CrossRefGoogle Scholar
(4)Chein, O. and Pflugfelder, H. O.The smallest Moufang loop. Arch. Math. 22 (1971), 573576.CrossRefGoogle Scholar
(5)Coxeter, H. S. M. and Moser, W. O. J.Generators and relations for discrete groups (Springer-Verlag, Berlin, 1972).CrossRefGoogle Scholar
(6)Glauberman, G. and Wright, C. R. B.Nilpotence of finite Moufang 2-loops. J. Alg. 8 (1968), 415417.CrossRefGoogle Scholar