Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T07:44:58.605Z Has data issue: false hasContentIssue false

A faithful polynomial representation of Out F3

Published online by Cambridge University Press:  28 June 2011

James McCool
Affiliation:
Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1

Extract

Let Fn be a free group of rank n and let Out Fn be its outer automorphism group. The main result of this paper is that Out F3 has a faithful representation as a group of automorphisms of the polynomial ring in seven variables over the integers. This extends a similar result for n = 2 (see Helling [3], Horowitz [5] and Rosenberger [12]), and provides a partial answer to a conjecture attributed in [5] to W. Magnus. As an application of the special nature of the representing polynomials, we obtain our second result, that Out F3 is virtually residually torsion-free nilpotent.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Coxeter, H. S. M. and Moser, W. O. J.. Generàtors and Relations for Discrete groups, 4th Ed. (Springer-Verlag, 1980).CrossRefGoogle Scholar
[2] Fricke, R. and Klein, F.. Vorlesungen über die Theorie der Automorphen Functionen. Vol. I (Teubner-Verlag, 1897).Google Scholar
[3] Helling, H.. Diskrete Untergruppen von SL2(ℝ). Invent. Math. 17 (1972), 217229.CrossRefGoogle Scholar
[4] Horowitz, R. D.. Characters of free groups represented in the two-dimensional special linear group. Comm. Pure Appl. Math. 25 (1972), 635649.CrossRefGoogle Scholar
[5] Horowitz, R. D.. Induced automorphisms on Fricke characters of free groups. Trans. Amer. Math. Soc. 208 (1975), 4150.CrossRefGoogle Scholar
[6] Lustig, M. and Metzler, W.. Integral representations of Aut Fn and presentation classes of groups. Contemp. Math. 44 (1985), 5167.CrossRefGoogle Scholar
[7] Magnus, W.. Rings of Fricke characters and automorphisms of free groups. Math. Z. 170 (1980), 91103.CrossRefGoogle Scholar
[8] Magnus, W.. The uses of 2 by 2 matrices in combinatorial group theory. A survey. Resultate Math. 4 (1981), 171192.CrossRefGoogle Scholar
[9] Magnus, W., Karrass, A. and Solitar, D.. Combinatorial Group Theory (Interscience, 1966).Google Scholar
[10] Neumann, B. H.. Die Automorphismengruppe der freien Gruppen. Math. Ann. 107 (1932), 367386.CrossRefGoogle Scholar
[11] Nielsen, J.. Die Isomorphismengruppe der freien Gruppen. Math. Ann. 91 (1924), 169209.CrossRefGoogle Scholar
[12] Rosenberger, G.. Fuchsche Gruppen, die freies Produkt zweier zyklischer Gruppen sind, und die Gleichung x2 + y2 + z2 = xyz. Math. Ann. 199 (1972), 213227.CrossRefGoogle Scholar
[13] Whittemore, A.. On special linear characters of free groups of rank n ≥ 4. Proc. Amer. Math. Soc. 40 (1973), 383388.Google Scholar