Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T11:53:29.713Z Has data issue: false hasContentIssue false

Explicit formulae connecting Hölder's, Cesàro's and another mean value

Published online by Cambridge University Press:  24 October 2008

Extract

1. Having given the terms sn of a sequence

then Hölder's means are defined by

Cesàro's means are defined by

and a third kind, σ, of mean which will be used in this paper is defined by

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1932

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

* Schur, I., Journal f. d. reine u. angew. Math., 151 (1921), 79111.Google Scholar

* I. Schur, op. cit.

Knopp, K., Math. Zeitschrift, 31 (1930), 97127.CrossRefGoogle Scholar

Schur, I., Math. Ann., 74 (1913), 447458CrossRefGoogle Scholar; see Landau, E., Darstellung und Begründung u.s.w. (1916), § 5.Google Scholar

* Kienast, , “Extensions of Abel's theorem and its converses”, Proc. Camb. Phil. Soc. 19 (1920), 129147Google Scholar.

* I am indebted to Prof. Hardy for the suggestion to consult in particular the paper of Ford.

Ford, W. B., “On the relation between the sum-formulas of Hölder and Cesàro”, Amer. J. Math. 32 (1910), 315326.CrossRefGoogle Scholar

Kienast, , Proc. Camb. Phil. Soc. 20 (1921), 7482.Google Scholar

* Kienast, , Proc. Camb. Phil. Soc. 20 (1921), 7482.Google Scholar

* Schlömilch, , Compendium d. höheren Analysis, 2 (1895), 12, 27.Google Scholar

* Kienast, , Proc. Camb. Phil. Soc. 20 (1921), 7482.Google Scholar