Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T07:44:28.714Z Has data issue: false hasContentIssue false

Estimates of critical percolation probabilities for a set of two-dimensional lattices

Published online by Cambridge University Press:  24 October 2008

D. G. Neal
Affiliation:
Department of Applied Statistics, University of Reading

Abstract

This paper describes new detailed Monte Carlo investigations into bond and site percolation problems on the set of eleven regular and semi-regular (Archimedean) lattices in two dimensions.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Broadbent, S. R. and Hammersley, J. M.Proc. Cambridge Philos. Soc. 53 (1957), 629CrossRefGoogle Scholar
(2)Dean, P.Proc. Cambridge Philos. Soc. 59 (1963), 397.CrossRefGoogle Scholar
(3)Dean, P. and Bird, N. F.Proc. Cambridge Philos. Soc. 63 (1967), 477.Google Scholar
(4)Frisch, H. L. and Hammersley, J. M.J. Soc. Indust. Appl. Math. Vol. 11, 4 (1963), 894.CrossRefGoogle Scholar
(5)Frisch, H. L., Hammersley, J. M. and Welsh, D. J. A.Phys. Rev. 126 (1962), 949.Google Scholar
(6)Frisch, H. L., Sonnenblick, E., Vyssotsky, V. A. and Hammersley, J. M.Phys. Rev. 124(1961), 1021.CrossRefGoogle Scholar
(7)Hammersley, J. M.Methods in Computational Physics 1 (1963), 281.Google Scholar
(8)Sykes, M. F. and Essam, J. W.J. Math. Phys. 5 (1964), 1117.CrossRefGoogle Scholar
(9)Tóth, , Fejes, . Regular figures 1964. (Pergamon Press).Google Scholar
(10)Vyssotsky, V. A., Gordon, S. B., Frisch, H. L. and Hammersley, J. M.Phys. Rev. 123 (1961), 1566.CrossRefGoogle Scholar