Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T07:27:08.187Z Has data issue: false hasContentIssue false

Equivariant homology

Published online by Cambridge University Press:  24 October 2008

David M. Austin
Affiliation:
Mathematics Department, University of British Columbia, Vancouver BC V6T 1Z2, Canada
Peter J. Braam
Affiliation:
Mathematical Institute, 23–29 St. Giles, Oxford 0X1 3LB

Abstract

This paper studies the homology of the homotopy quotient of a G-manifold. We start by formulating a complex based on differential forms to compute this homology. This leads to a topological version of integration formulas over fibred products of G-manifolds. In particular the TQFT formulas studied by Witten and Atiyah–Jeffrey now appear as a pairing of homology and cohomology classes. We compare our construction with both the double complex of Axelrod and Witten and with the distributional complex of Duflo and Vergne.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Atiyah, M. F. and Bott, R.. The Yang–Mills equations over Riemann surfaces. Phil. Trans. of the Royal Society of London, Series A 308 (1982), 523615.Google Scholar
[2]Atiyah, M. F. and Bott, R.. The moment map and equivariant cohomology. Topology 23 (1984), 128.CrossRefGoogle Scholar
[3]Atiyah, M. F. and Jeffrey, L.. Topological Lagrangians and cohomology. Journal of Geometry and Physics 7 (1990), 119136.CrossRefGoogle Scholar
[4]Austen, D. M. and Braam, P.-J.. Equivariant Floer theory and gluing Donaldson polynomials, to appear.Google Scholar
[5]Axelrod, S. and Witten, E.. Private communication.Google Scholar
[6]Berline, N., Getzler, E. and Vergne, M.. Heat kernels andDirac Operators (Springer-Verlag, 1992).CrossRefGoogle Scholar
[7]Cartan, H.. La transgression dans un groupe de Lie et dans un espace fibre principal. Colloque de Toplogie (Espaces Fibres), pages 5771, 1950.Google Scholar
[8]Donaldson, S. K.. Gluing techniques in the cohomology of moduli spaces. In Topological methods in modern mathematics, pages 137170, 1993.Google Scholar
[9]Duflo, M. and Vergne, M.. Cohomologie équivariante de descente. Astérisque 215 (1993), 5108.Google Scholar
[10]Getzler, E.. Private communication.Google Scholar
[11]Jeffrey, L. and Kirwan, F.. Localization for nonabelian group actions, preprint (1993).Google Scholar
[12]Kirwan, F.. Cohomology of Quotients in Sympletic and Algebraic Geometry, vol. 31 of Mathematical Notes (Princeton University Press, 1984).Google Scholar
[13]Kumar, S. and Vergne, M.. Equivariant cohomology with generalized coefficients. Astérisque 215 (1993), 109204.Google Scholar
[14]Mathai, V. and Quillen, D.. Superconnections, Thorn classes, and equivariant differential forms. Topology 25(1) (1986), 85110.CrossRefGoogle Scholar
[15]Serre, J.-P.. Un théorème de dualité. Comm. Math. Helv. 29 (1955), 926.CrossRefGoogle Scholar
[16]Taubes, C. H.. The role of reducibles in Donaldson–Floer theory, to appear in the Proceedings of the 1993 Taniguchi Symposium on low dimensional topology and topological field theory.Google Scholar
[17]Witten, E.. Topological quantum field theory. Comm. Math. Phys. 117 (1988), 353–86.CrossRefGoogle Scholar
[18]Witten, E.. Two dimensional gauge theories revisited. J. Geom. Phys. 9 (1992), 303368.CrossRefGoogle Scholar