Dualizing complexes for commutative Noetherian rings
Published online by Cambridge University Press: 24 October 2008
Extract
The theory of dualizing complexes of Grothendieck and Hartshorne ((5), chapter v) has turned out to be a useful tool even in commutative algebra. For instance, Peskine and Szpiro used dualizing complexes in their (partial) solution of Bass's conjecture concerning finitely-generated (f.-g.) modules of finite injective dimension over a Noetherian local ring ((7), chapitre I, §5); and the present author first obtained the results in (9) by using dualizing complexes.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 78 , Issue 3 , November 1975 , pp. 369 - 386
- Copyright
- Copyright © Cambridge Philosophical Society 1975
References
REFERENCES
(1)Atiyah, M. F. and MacDonald, L. G.Introduction to commutative algebra (Addison Wesley, 1969).Google Scholar
(3)Cartan, H. and Eilenberg, S.Homological algebra (Princeton University Press, 1956).Google Scholar
(4)Douglas, A. J.An elementary derivation of certain homological inequalities. Mathematika 10 (1963), 114–124.CrossRefGoogle Scholar
(5)Hartshorne, R.Residues and duality (Springer Lecture Notes in Mathematics, no. 20, 1966).CrossRefGoogle Scholar
(6)Northcott, D. G.An introduction to homological algebra (Cambridge University Press, 1962).Google Scholar
(7)Peskine, C. and Szpiro, L.Dimension projective finie et cohomologie locale. Inst. Hautes Études Sci. Publ. Math. 42 (1973), 323–395.CrossRefGoogle Scholar
(8)Serre, J.-P.Algèbre locale: multiplicités (Springer Lecture Notes in Mathematics, no. 11, 1965).Google Scholar
(9)Sharp, R. Y.Finitely generated modules of finite injective dimension over certain Cohen–Macaulay rings. Proc. London Math. Soc. (3) 25 (1972), 303–328.CrossRefGoogle Scholar
(10)Swan, R. G.Algebraic K-theory (Springer Lecture Notes in Mathematics, no. 76, 1968).CrossRefGoogle Scholar
- 20
- Cited by