Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T01:33:23.528Z Has data issue: false hasContentIssue false

Dual of non-commutative Lp-spaces with 0 < p < 1

Published online by Cambridge University Press:  24 October 2008

Keiichi Watanabe
Affiliation:
Department of Mathematics, Niigata University, Niigata, 950-21, Japan

Extract

After the development of the modular theory one can construct non-commutative Lp-spaces associated with a von Neumann algebra M which is not necessarily semifinite (see [4], [12], etc.).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Day, M. M.. The spaces Lp with 0 < p < 1. Bull. Amer. Math. Soc. 46 (1940), 816823.Google Scholar
[2]Haagerup, U.. The standard form of von Neumann algebras. Math. Scand. 37 (1975), 271283.Google Scholar
[3]Haagerup, U.. Operator valued weight in von Neumann algebras I. J. Funct. Anal. 32 (1979), 175206.CrossRefGoogle Scholar
[4]Haagerup, U.. Operator valued weight in von Neumann algebras II. J. Fund. Anal. 33 (1979), 339361.Google Scholar
[5]Haagerup, U.. Lp-spaces associated with an arbitrary von Neumann algebra. Colloq. Internat. CNRS 274 (1979), 175184.Google Scholar
[6]Kosaki, H.. Positive cones associated with a von Neumann algebra. Math. Scand. 47 (1980), 295307.Google Scholar
[7]Kosaki, H.. Applications of uniform convexity of noncommutative Lp-spaces. Trans. Amer. Math. Soc. 283 (1984), 265282.Google Scholar
[8]Kosaki, H.. On the continuity of the map ø → |ø| from the predual of a W*-algebra. J. Funct. Anal. 59 (1984), 123131.CrossRefGoogle Scholar
[9]Nelson, E.. Note on non-commutative integration. J. Fund. Anal. 15 (1974), 104116.CrossRefGoogle Scholar
[10]Saito, K.-S.. Non-commutative Lp-spaces with 0 < p < 1. Math. Proc. Cambridge Philos. Soc. 89 (1981), 405411.Google Scholar
[11]Stratila, S.. Modular Theory in Operator Algebras (Abacus Press, 1981).Google Scholar
[12]Terp, M.. Lp-spaces associated with von Neumann algebras. Rapport No. 3, University of Odense (1981).Google Scholar
[13]Yeadon, F. J.. Non-commutative Lp-spaces. Math. Proc. Cambridge Philos. Soc. 77 (1975), 91102.CrossRefGoogle Scholar