Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T15:44:57.717Z Has data issue: false hasContentIssue false

The α-dimensional measure of the graph and set of zeros of a Brownian path

Published online by Cambridge University Press:  24 October 2008

S. J. Taylor
Affiliation:
PeterhouseCambridge

Extract

In a recent joint paper (1) with Prof. Besicovitch we announced the conjecture that for almost all one-dimensional Brownian paths, the set of zeros has dimensional number ½, and zero A½-measure. It is the purpose of this paper to give a proof of this result. In doing so we consider the graph C(ω) of a Brownian path ω as a point set in the plane, and prove that, with probability 1, C(ω) has dimensional number ¾ and zero Λ¾-measure.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Besicovitch, A. S. and Taylor, S. J.On the complementary intervals of a linear closed set of zero Lebesgue measure. J. Lond. math. Soc. 29 (1954), 449–59.CrossRefGoogle Scholar
(2)Besicovitch, A. S. and Ursell, H. D.Sets of fractional dimensions, V: On dimensional numbers of some continuous curves. J. Lond. math. Soc. 12 (1937), 1825.CrossRefGoogle Scholar
(3)Fekete, M.Über den transfiniten Durchmesser ebener Punktmengen. I. Math. Z. 32 (1930), 108–14.CrossRefGoogle Scholar
(4)Frostman, O.Potentiel d'équilibre et capacité des ensembles, avec quelques applications à la théorie des fonctions. Medd. Lunds Univ. mat. Semin. 3 (1935).Google Scholar
(5)Kametani, S.On Hausdorff's measures and generalised capacities with some of their applications to the theory of functions. Jap. J. Math. 19 (1946), 217–57.CrossRefGoogle Scholar
(6)LÉvy, P.Sur certains processus stochastiques homogènes. Compos. math. 7 (1940), 283339.Google Scholar
(7)LÉvy, P.Processus stochastiques et mouvements browniens (Paris, 1948).Google Scholar
(8)LÉVY, P.La mesure de Hausdorff de la courbe du mouvement brownien. G. Inst. ital. Attuari, 16 (1953), 137.Google Scholar
(9)Marstrand, J. M.The dimension of Cartesian product sets. Proc. Camb. phil. Soc. 50 (1954), 198202.CrossRefGoogle Scholar
(10)Paley, R. E. A. C. and Wiener, N.Fourier transforms in the complex domain (Colloq. Publ. Amer. math. Soc. no. 19, 1934).Google Scholar
(11)Taylor, S. J.The Hausdorff α-dimensional measure of Brownian paths in n–space. Proc. Camb. phil. Soc. 49 (1953), 31–9.CrossRefGoogle Scholar
(12)Weyl, H.Über die Gleichwerteilung von Zahlen mod. Eins. Math. Ann. 77 (1916), 313–54.CrossRefGoogle Scholar