Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T06:37:46.724Z Has data issue: false hasContentIssue false

Defective big Cohen-Macaulay modules

Published online by Cambridge University Press:  24 October 2008

M. L. Brown
Affiliation:
University College, Cardiff

Extract

Let R be a noetherian local ring and x = x1, …, xn a system of parameters for R. If R is an equicharacteristic local ring then Hochster(3) proved there is a big Cohen-Macaulay module with respect to x, i.e. an R-module M, not necessarily noetherian, with x1, …, xn a regular sequence on M and M/(x) M ≠ 0. Such modules are important for the study of the homological conjectures in commutative algebra(3). Nevertheless, for mixed characteristic local rings virtually nothing is known about their existence.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Altman, A. and Kleiman, S. Introduction to Grothendieck Duality Theory, Lecture Notes in Math. no. 146 (Springer-Verlag, Heidelberg, 1970).Google Scholar
(2)Grothendieck, A. and Dieudonné, J.Eléments de géométrie algébrique. Inst. Hautes Études Sci. Publ. Math. (19601967).Google Scholar
(3)Hochster, M., Topics in the homological theory of modules over commutative rings. Conference Board of the Mathematical Sciences, no. 24 (American Math. Soc., 1975).CrossRefGoogle Scholar
(4)Hochster, M. The status of the homological conjectures. Colloquium on commutative algebra, University of Durham (1981).Google Scholar
(5)Nagata, M.Local rings (Interscience, New York-London, 1962).Google Scholar
(6)Serre, J.-P. Algebre locale: multiplicités. Lecture Notes in Mathematics, no. 11 (Springer-Verlag, Berlin-Heidelberg-New York, 1965).Google Scholar