Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T07:18:48.075Z Has data issue: false hasContentIssue false

Coxeter groups and Kähler groups

Published online by Cambridge University Press:  02 September 2013

PIERRE PY*
Affiliation:
IRMA, Université de Strasbourg & CNRS67084 Strasbourg, France. e-mail: [email protected]

Abstract

We study homomorphisms from Kähler groups to Coxeter groups. As an application, we prove that a cocompact complex hyperbolic lattice (in complex dimension at least 2) does not embed into a Coxeter group or a right-angled Artin group. This is in contrast with the case of real hyperbolic lattices.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Agol, I. The virtual Haken conjecture, with an appendix by I. Agol, D. Groves and J. Manning, preprint arXiv:1204.2810 (2012).CrossRefGoogle Scholar
[2]Amoros, J., Burger, M., Corlette, K., Kotschick, D. and Toledo, D.Fundamental groups of compact Kähler manifolds. Math. Surveys Monogr. 44 (Amer. Math. Soc. Providence, RI, 1996).Google Scholar
[3]Benoist, Y. and de la Harpe, P.Adhérence de Zariski des groupes de Coxeter. Compostio Math. 140, No. 5 (2004), 13571366.CrossRefGoogle Scholar
[4]Bergeron, N., Haglund, F. and Wise, D. T.Hyperplane sections in arithmetic hyperbolic manifolds. J. Lond. Math. Soc. (2) 83, No. 2 (2011), 431448.CrossRefGoogle Scholar
[5]Biswas, I. and Mj, M.One-relator Kähler groups. Geometry & Topology 16 (2012), 21712186.CrossRefGoogle Scholar
[6]Bridson, M. and Howie, J.Subgroups of direct products of elementarily free groups. Geom. Funct. Anal. 17, No. 2 (2007), 385403.CrossRefGoogle Scholar
[7]Bridson, M., Howie, J., Miller, C. F. III and Short, H.The subgroups of direct products of surface groups, Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata 92 (2002), 95103.CrossRefGoogle Scholar
[8]Bridson, M., Howie, J., Miller, C. F. III and Short, H.Subgroups of direct products of limit groups. Ann. of Math. (2) 170, No. 3 (2009), 14471467.CrossRefGoogle Scholar
[9]Brown, K. S.Cohomology of groups. Corrected reprint of the 1982 original. Graduate Texts in Math. 87 (Springer-Verlag, New York, 1994).Google Scholar
[10]Burger, M.Fundamental groups of Kähler manifolds and geometric group theory. Bourbaki Seminar No. 1022, Astérisque No. 339 (2011).Google Scholar
[11]Burger, M., Iozzi, A. and Monod, N.Equivariant embeddings of trees into hyperbolic spaces. Int. Math. Res. Not. No. 22 (2005), 13311369.CrossRefGoogle Scholar
[12]Catanese, F., Keum, J. and Oguiso, K.Some remarks on the universal cover of an open K3 surface. Math. Ann. 325, No. 2 (2003), 279286.CrossRefGoogle Scholar
[13]Charney, R.An introduction to right-angled Artin groups. Geom. Dedicata 125 (2007), 141158.CrossRefGoogle Scholar
[14]Charney, R. and Davis, M.Finite K(π,1)s for Artin groups, Prospects in Topology (Princeton, NJ, 1994), Ann. of Math. Stud. 138 (Princeton University Press, 1995), 110124.Google Scholar
[15]de Cornulier, Y. and de la Harpe, P.Décompositions de groupes par produit direct et groupes de Coxeter. Geometric group theory. Trends Math. (Birkhäuser, Basel, 2007), 75102.Google Scholar
[16]Davis, M. W.The geometry and topology of Coxeter groups, London Math. Soc. Monogr. Series 32 (Princeton University Press, Princeton, 2008).Google Scholar
[17]Davis, M. W. and Januszkiewicz, T.Right-angled Artin groups are commensurable with right-angled Coxeter groups. J. Pure Appl. Algebra 153, No. 3 (2000), 229235.CrossRefGoogle Scholar
[18]Delzant, T. and Gromov, M.Cuts in Kähler groups. Infinite groups: geometric, combinatorial and dynamical aspects. Progr. Math. 248 (Birkhäuser, Basel, 2005), 3155.Google Scholar
[19]Delzant, T. and Py, P.Kähler groups, real hyperbolic spaces and the Cremona group. Compositio Math. 148, No. 1 (2012), 153184.CrossRefGoogle Scholar
[20]Dimca, A., Papadima, S. and Suciu, A.Non-finiteness properties of fundamental groups of smooth projective varieties. J. Reine Angew. Math. 629 (2009), 89105.Google Scholar
[21]Dimca, A., Papadima, S. and Suciu, A.Topology and geometry of cohomology jump loci. Duke Math. J. 148, No. 3 (2009), 405457.CrossRefGoogle Scholar
[22]Dranishnikov, A. and Januszkiewicz, T.Every Coxeter group acts amenably on a compact space, Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT), Topology Proc. 24 (1999), 135141.Google Scholar
[23]Gromov, M. and Schoen, R.Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math. 76 (1992), 165246.CrossRefGoogle Scholar
[24]Humphreys, J. E.Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Math. 29 (Cambridge University Press, Cambridge 1990).Google Scholar
[25]Januszkiewicz, T.For Coxeter groups z |g| is a coefficient of a uniformly bounded representation. Fund. Math. 174, No. 1 (2002), 7986.CrossRefGoogle Scholar
[26]Johnson, F. E. A. and Rees, E. G.On the fundamental group of a complex algebraic manifold. Bull. London Math. Soc. 19, No. 5 (1987), 463466.CrossRefGoogle Scholar
[27]Kotschick, D.The deficiencies of Kähler groups. J. Topology 5, No. 3 (2012), 639650.CrossRefGoogle Scholar
[28]Krammer, D.The conjugacy problem for Coxeter groups. Groups Geom. Dyn. 3, No. 1 (2009), 71171.CrossRefGoogle Scholar
[29]Lécureux, J.Amenability of actions on the boundary of a building. Int. Math. Res. Not. No. 17 (2010), 32653302.Google Scholar
[30]Long, D. D. and Reid, A. W.Subgroup separability and virtual retractions of groups. Topology 47, No. 3 (2008), 137159.CrossRefGoogle Scholar
[31]Noskov, G. A. and Vinberg, E. B.Strong Tits alternative for subgroups of Coxeter groups. J. Lie Theory 12, No. 1 (2002), 259264.Google Scholar
[32]Paris, L.Irreducible Coxeter groups. Internat. J. Algebra Comput. 17, No. 3 (2007), 427447.CrossRefGoogle Scholar
[33]Qi, D.On irreducible, infinite, nonaffine Coxeter groups. Fund. Math. 193, No. 1 (2007), 7993.CrossRefGoogle Scholar
[34]Singh, S. Coxeter groups are not higher rank arithmetic groups. Preprint arXiv:1208.6569 (2012).CrossRefGoogle Scholar
[35]Simpson, C.Lefschetz theorems for the integral leaves of a holomorphic one-form. Compositio Math. 87, No. 1 (1993), 99113.Google Scholar