No CrossRef data available.
Article contents
The continuous singular spectrum of the Schrödinger operator
Published online by Cambridge University Press: 24 October 2008
Abstract
We give sufficient conditions on the potential V(x) which ensure that the Schrödinger operator (1 · 1) of quantum mechanics has no singular continuous spectrum This generalizes previous results.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 88 , Issue 1 , July 1980 , pp. 59 - 69
- Copyright
- Copyright © Cambridge Philosophical Society 1980
References
REFERENCES
(1)Kato, T.Wave operators and similarity for some non-self-adjoint operators. Math. Ann. 162 (1966), 258–279.CrossRefGoogle Scholar
(2)Putnam, C. R.Commutation properties of Hilbert space operators (Springer, 1967).CrossRefGoogle Scholar
(3)Lavine, R.Commutators and scattering theory. Indiana Univ. Math. J. 21 (1972), 643–656.CrossRefGoogle Scholar
(4)Agmon, S.Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa 2 (1975) 151–218.Google Scholar
(5)Howland, J. S.Banach space techniques in the perturbation theory of self-adjoint operators. J. Math. Anal. Appl. 20 (1967), 22–47.CrossRefGoogle Scholar
(6)Ikebe, T.Eigenfunction expansions associated with the Schrödinger operator. Arch. Rat. Mech. Anal. 5 (1960), 1–34.CrossRefGoogle Scholar
(7)Saito, Y.The principle of limiting absorption. Publ. Res. Inst. Math. Sci. 7 (1972), 581–619.CrossRefGoogle Scholar
(8)Kuroda, S. T.Scattering theory for differential operators: I, II, J. Math. Soc. Japan 25 (1973), 75–104, 222–234.Google Scholar
(9)Shenk, N. and Thoe, D.Eigenfunction expansions and scattering theory. J. Math. Anal. Appl. 36 (1971) 313–351.CrossRefGoogle Scholar
(10)Alsholm, P. and Schmidt, G.Spectral and scattering theory for Schrödinger operators. Arch. Rat. Mech. Anal. 40 (1971), 281–311.CrossRefGoogle Scholar
(12)Schechter, M.Discreteness of the singular spectrum. Math. Proc. Cambridge Philos. Soc. 80 (1976), 121–133.CrossRefGoogle Scholar
(13)Rejto, P.Some potential perturbations of the Laplacian. Helv. Phys. Acta 44 (1971) 708–736.Google Scholar
(14)Schechter, M.Another look at scattering theory. International Theoret. Phys. 17 (1978), 33–41.CrossRefGoogle Scholar
(15)Schechter, M. Two space scattering theory using the subspace of continuity. (To appear).Google Scholar
(17)Schechter, M.Scattering theory for second order elliptic operators. Ann. Mat. Pura Sppl. 105 (1975), 313–331.CrossRefGoogle Scholar
(18)Schechter, M.Scattering theory for elliptic operators. Comm. Math. Helv. 49 (1974) 84–113.CrossRefGoogle Scholar