Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T17:03:50.392Z Has data issue: false hasContentIssue false

Constructing projective varieties in weighted flag varieties II

Published online by Cambridge University Press:  13 January 2015

MUHAMMAD IMRAN QURESHI*
Affiliation:
Lums School of Science and Engineering, U-Block, DHA, Lahore, Pakistan. e-mail: [email protected]

Abstract

We give the construction of weighted Lagrangian Grassmannians wLGr(3,6) and weighted partial A3 flag variety wFL1,3 coming from the symplectic Lie group Sp(6, ℂ) and the general linear group GL(4, ℂ) respectively. We give general formulas for their Hilbert series in terms of Lie theoretic data. We use them as key varieties (Format) to construct some families of polarized 3-folds in codimension 7 and 9. Finally, we list all the distinct weighted flag varieties in codimension (4 ⩽ c ⩽ 10.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Altinok, S. Graded rings corresponding to the polarized K3 surfaces and ℚ-Fano 3-folds. PhD. thesis. University of Warwick (1998).Google Scholar
[2]Altinok, S., Brown, G. and Reid, M.Fano 3-folds, K3 surfaces and graded rings. Topology and geometry: commemorating SISTAG. (Berrick, A. J., Lenug, M.C. and Xu, X., eds.). Contemp. Math. vol. 314 (AMS, Providence, RI, 2002), pp. 2553.CrossRefGoogle Scholar
[3]Atiyah, M. F. and Macdonald, I. G.Introduction to Commutative Algebra (Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969).Google Scholar
[4]Brown, G. and Kasprzyk, A. M. The graded ring database. Available at http://grdb.lboro.ac.uk/.Google Scholar
[5]Brown, G., Kerber, M. and Reid, M.Fano 3-folds in codimension 4, Tom and Jerry. I. C. Math. 148 (2012), no. 4, 11711194.CrossRefGoogle Scholar
[6]Buchsbaum, D. A. and Eisenbud, D.Algebra structures for finite free resolution, and some structure theorems for ideals of codimension 3. Amer. J. Math 99 (1977), 447485.CrossRefGoogle Scholar
[7]Buckley, A. and Szendrői, B.Orbifold Riemann–Roch for threefolds with an application to Calabi-Yau geometry. J. Algebraic Geom. 14 (2005), no. 4, 601622.CrossRefGoogle Scholar
[8]Corti, A. and Reid, M.Weighted Grassmannians, Algebraic geometry (Beltrametti, M. C., Catanese, F., Ciliberto, C., Lanteri, A., and Pedrini, C., eds.), de Gruyter, Berlin, 2002, pp. 141163.Google Scholar
[9]de Graaf, W. A.Constructing representations of split semisimple Lie algebras. J. Pure Appl. Algebra 164 (2001), no. 1–2, 87107, Effective methods in algebraic geometry (Bath, 2000).CrossRefGoogle Scholar
[10]Fulton, W. and Harris, J.Representation theory, a first course. Graduate Texts in Math. 129 (Springer-Verlag, 1991).Google Scholar
[11]Gorodentsev, A. L., Khoroshkin, A. S. and Rudakov, A. N.On syzygies of highest weight orbits. Moscow Seminar on Mathematical Physics. II (Arnold, V. I., Gindikin, D.G., and Maslov, V. P., eds.). Amer. Math. Soc. Transl. Ser. 2, vol. 221, (AMS, Providence, RI, 2007), pp. 79120.Google Scholar
[12]Iano-Fletcher, A. R.Working with weighted complete intersections. Explicit birational geometry of 3-folds, vol. 281. London Math. Soc. Lecture Note Ser. (Cambridge University Press, 2000), pp. 101173.CrossRefGoogle Scholar
[13]Mori, S. and Mukai, S.Classification of Fano 3-folds with B 2 ⩾ 2. Manuscripta Math. 36 (1981/82), no. 2, 147162.CrossRefGoogle Scholar
[14]Mukai, S. Curves, K3 surfaces and Fano 3-folds of genus ⩽ 10. Algebraic Geometry and Commutative Algebra. vol. I (Kinokuniya, 1988), pp. 357377.CrossRefGoogle Scholar
[15]Mukai, S.Curves and symmetric spaces. II. Ann. of Math (2) 169 (2010), no. 3, 15391558.CrossRefGoogle Scholar
[16]Qureshi, M. I. Families of polarized varieties in weighted flag varieties. PhD. thesis. University of Oxford (2011).CrossRefGoogle Scholar
[17]Qureshi, M. I. and Szendrői, B.Contructing projective varieties in weighted flag varieties. Bull. London Math Soc. 43 (2011), no. 2, 786798.CrossRefGoogle Scholar
[18]Qureshi, M. I. and Szendrői, B. Calabi-Yau threefolds in weighted flag varieties. Adv. High Energy Phys.2012 (2012), 14pp.CrossRefGoogle Scholar
[19]Reid, M.Young person's guide to canonical singularities. Algebraic Geometry (Bowdoin, 1985, Brunswick, Maine, 1985). Proc. Sympos. Pure Math. vol. 46 (Amer. Math. Soc., Providence, RI, 1987), pp. 345414.Google Scholar