Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-16T17:03:07.607Z Has data issue: false hasContentIssue false

Complemented copies of l1, in Lp(μ;E)

Published online by Cambridge University Press:  24 October 2008

José Mendoza
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid 28040, Spain

Abstract

Let E be a Banach space, let (Ω, Σ, μ) a finite measure space, let 1 < p < ∞ and let Lp(μ;E) the Banach space of all E-valued p-Bochner μ-integrable functions with its usual norm. In this note it is shown that E contains a complemented subspace isomorphic to l1 if (and only if) Lp(μ; E) does. An extension of this result is also given.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bombal, F.. On l 1, subspaces of Orlicz vector-valued function spaces. Math. Proc. Cambridge Philos. Soc. 101 (1987), 107112.CrossRefGoogle Scholar
[2]Bombal, F.. On embedding l 1 as a complemented subspace of Orlicz vector valued function spaces. Rev. Mat. Univ. Complutense Madrid 1 (1988), 1317.Google Scholar
[3]Bombal, F.. On (V*) sets and Pelczynski's property (V*). Glasgow Math. J. 32 (1990), 109120.CrossRefGoogle Scholar
[4]Bourgain, J.. New classes of Lp-spaces. Lecture Notes in Math. vol. 889 (Springer-Verlag, 1981).Google Scholar
[5]Diestel, J.. Sequences and Series in Banach spaces. Graduate Texts in Math. no. 92 (Springer-Verlag, 1984).CrossRefGoogle Scholar
[6]Diestel, J. and Uhl, J. J. Jr. Vector Measures. Math. Surveys no. 15 (American Mathematical Society, 1977).CrossRefGoogle Scholar
[7], A. and Tulcea, C. Ionescu. Topics in the Theory of Liftings. Ergebnisse der Mathematik und ihrer Grenzgebiete vol. 48 (Springer-Verlag, 1969).Google Scholar
[8]Lindenstauss, J. and Tzafriri, L.. Classical Banach spaces, vol. 1. Ergebnisse der Mathematik und ihrer Grenzgebiete vol. 92 (Springer-Verlag, 1977).CrossRefGoogle Scholar
[9]Lindenstauss, J. and Tzafriri, L.. Classical Banach spaces, vol. 2. Ergebnisse der Mathematik und ihrer Grenzgebiete vol. 97 (Springer-Verlag, 1979).CrossRefGoogle Scholar
[10]Pisier, G.. Une proprieté de stabilité de la classe des espaces ne contenant pas l 1. C.R. Acad. Sci. Paris Sér. A 286 (1978), 747749.Google Scholar
[11]Talagrand, M.. Weak Cauchy sequences in L 1(E). Amer. J. Math. 106 (1984), 703724.CrossRefGoogle Scholar
[12]Tzafriri, L.. Reflexivity in Banach lattices and their subspaces. J. Funct. Anal. 10 (1972), 118.CrossRefGoogle Scholar