No CrossRef data available.
Article contents
Commensurability classes of arithmetic Fuchsian surface groups of genus 2
Published online by Cambridge University Press: 28 September 2009
Abstract
Here we determine the arithmetic data i.e. the totally real number field and the set of ramified places of the defining quaternion algebra, of all those commensurability classes of arithmetic Fuchsian groups which contain a surface group of genus 2, i.e. a group of signature (2;– –).
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 148 , Issue 1 , January 2010 , pp. 117 - 133
- Copyright
- Copyright © Cambridge Philosophical Society 2009
References
REFERENCES
[1]Ackermann, P.A description of the arithmetic Fuchsian groups with signature (2;– –). Contemp. Math. 421 (2006), 1–14.CrossRefGoogle Scholar
[2]Ackermann, P., Näätänen, M. and Rosenberger, G.The arithmetic Fuchsian groups of signature (0; 2, 2, 2, q). Res. Exp. Math. 27 (2003), 1–9.Google Scholar
[3]Baer, C. Klassifikation arithmetischer Fuchsscher Gruppen der Signatur (0; e 1, e 2, e 3, e 4). Dissertation (University Dortmund, 2001).Google Scholar
[4]Borel, A.Commensurability classes and volumes of hyperbolic three-manifolds. Ann. Scuola Norm. Sup. Pisa 8 (1981), 1–33.Google Scholar
[5]Chinburg, T. and Friedman, E.An embedding theorem for quaternion algebras. J. London Math. Soc. 60 (1999), 33–44.CrossRefGoogle Scholar
[6]Chinburg, T. and Friedman, E.The finite subgroups of maximal arithmetic subgroups of PGL(2, ). Ann. Inst. Fourier 50 (2000), 1765–1798.CrossRefGoogle Scholar
[7]Hilbert, D.Über die Theorie des relativquadratischen Zahlkörpers. Math. Ann. 51 (1899), 1–127.CrossRefGoogle Scholar
[8]Johansson, S.Genera of arithmetic Fuchsian groups. Acta Arith. 86 (1998), 171–191.CrossRefGoogle Scholar
[9]Macasieb, M.Derived arithmetic Fuchsian groups of genus two. Experiment. Math. 17 (1) (2008), 347–369.CrossRefGoogle Scholar
[10]Maclachlan, C.Torsion in arithmetic Fuchsian groups. J. London Math. Soc. 73 (2006), 14–30.CrossRefGoogle Scholar
[11]Maclachlan, C.Torsion in maximal arithmetic Fuchsian groups. Contemp. Math. 421 (2006), 213–225.CrossRefGoogle Scholar
[12]Maclachlan, C. and Reid, A. W.The arithmetic of hyperbolic 3-manifolds. Graduate Texts in Maths Vol 219 (Springer, 2003.)Google Scholar
[13]Maclachlan, C. and Rosenberger, G.Two-generator arithmetic Fuchsian groups II. Math. Proc. Camb. Phil. Soc. 111 (1992), 7–24.CrossRefGoogle Scholar
[14]Maclachlan, C. and Rosenberger, G.Commensurability classes of two generator Fuchsian groups. London Math. Soc. Lecture Note Series Vol. 173 (Cambridge University Press, Cambridge, 1992), 171–189.Google Scholar
[15]Odlyzko, A.Some analytic estimates of class numbers and discriminants. Invent. Math. 29 (3) (1975), 275–286.CrossRefGoogle Scholar
[17]Abu Osman, M.T. and Rosenberger, G. Embedding property of surface groups. Bull. Malaysian Math. Soc. II Ser 3. (1980), 21–27.Google Scholar
[20]Silhol, R.On some one parameter families of genus 2 algebraic curves and half-twists. Comment. Math. Helv. 82 (2007), 413–449.CrossRefGoogle Scholar
[21]Lelievre, S. and Silhol, R. Multi-geodesic tesselations, fractional Dehn twists and uniformization of algebraic curves, to appear.Google Scholar
[22]Singerman, D.Finitely generated maximal Fuchsian groups. J. London Math. Soc. 6 (1972), 29–38.CrossRefGoogle Scholar
[23]Takeuchi, K.Arithmetic triangle groups. J. Math. Soc. Japan 29 (1977), 91–106.CrossRefGoogle Scholar
[24]Takeuchi, K.Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo 24 (1977), 201–222.Google Scholar
[25]Takeuchi, K.Arithmetic Fuchsian groups of signature (1; e). J. Math. Soc. Japan 35 (1983), 381–407.Google Scholar