Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T20:40:15.368Z Has data issue: false hasContentIssue false

Coloured tangles and signatures

Published online by Cambridge University Press:  27 March 2017

DAVID CIMASONI
Affiliation:
Section de Mathématiques, Université de Genève, 2-4, rue du Lièvre, CP 240, CH-1211 Genève 24, Suisse. e-mails: [email protected], [email protected]
ANTHONY CONWAY
Affiliation:
Section de Mathématiques, Université de Genève, 2-4, rue du Lièvre, CP 240, CH-1211 Genève 24, Suisse. e-mails: [email protected], [email protected]

Abstract

Taking the signature of the closure of a braid defines a map from the braid group to the integers. In 2005, Gambaudo and Ghys expressed the homomorphism defect of this map in terms of the Meyer cocycle and the Burau representation. In the present paper, we simultaneously extend this result in two directions, considering the multivariable signature of the closure of a coloured tangle. The corresponding defect is expressed in terms of the Maslov index and of the Lagrangian functor defined by Turaev and the first-named author.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Abdulrahim, M. N. A faithfulness criterion for the Gassner representation of the pure braid group. Proc. Amer. Math. Soc. 125 (5) (1997), 12491257.Google Scholar
[2] Birman, J. S. Braids, links, and mapping class groups. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Ann. of Math. Stud., No. 82.Google Scholar
[3] Burau, W. Über Zopfgruppen und gleichsinnig verdrillte Verkettungen. Abh. Math. Sem. Univ. Hamburg. 11 (1) (1935), 179186.Google Scholar
[4] Cimasoni, D. A geometric construction of the Conway potential function. Comment. Math. Helv., 79 (1) (2004), 124146.Google Scholar
[5] Cimasoni, D. and Florens, V. Generalized Seifert surfaces and signatures of colored links. Trans. Amer. Math. Soc. 360 (3) (electronic), (2008), 12231264.Google Scholar
[6] Cimasoni, D. and Turaev, V. A Lagrangian representation of tangles. Topology 44 (4) (2005), 747767.Google Scholar
[7] Cimasoni, D. and Turaev, V. A Lagrangian representation of tangles. II. Fund. Math. 190 (2006), 1127.Google Scholar
[8] Cooper, D. The universal abelian cover of a link. In Low-dimensional topology (Bangor, 1979), vol. 48 of London Math. Soc. Lecture Note Ser. (Cambridge University Press, Cambridge–New York, 1982), pages 5166.CrossRefGoogle Scholar
[9] Degtyarev, A., Florens, V. and Lecuona, A. The signature of a splice. ArXiv e-prints, (2014).Google Scholar
[10] Florens, V. Signatures of colored links with application to real algebraic curves. J. Knot Theory Ramifications, 14 (7) (2005), 883918.Google Scholar
[11] Gambaudo, J.-M. and Ghys, É.. Braids and signatures. Bull. Soc. Math. France. 133 (4) (2005), 541579.CrossRefGoogle Scholar
[12] Ghys, É. and Ranicki, A., editors. Six papers on signatures, braids and Seifert surfaces, Ensaios Matemáticos [Mathematical Surveys]. vol. 30. (Sociedade Brasileira de Matemática, Rio de Janeiro, 2016).Google Scholar
[13] Gilmer, P. M. Configurations of surfaces in 4-manifolds. Trans. Amer. Math. Soc. 264 (2) (1981), 353380.Google Scholar
[14] Kirk, P., Livingston, C. and Wang, Z. The Gassner representation for string links. Commun. Contemp. Math. 3 (1) (2001), 87136.CrossRefGoogle Scholar
[15] Le Dimet, J.-Y.. Enlacements d'intervalles et représentation de Gassner. Comment. Math. Helv. 67 (2) (1992), 306315.Google Scholar
[16] Lee, S. and Lee, E. Potential weaknesses of the commutator key agreement protocol based on braid groups. In Advances in cryptology–-EUROCRYPT 2002 (Amsterdam), vol. 2332. Lecture Notes in Comput. Sci. pages 1428. Springer, Berlin, 2002.Google Scholar
[17] Levine, J. Knot cobordism groups in codimension two. Comment. Math. Helv. 44 (1969), 229244.Google Scholar
[18] Meyer, W. Die Signatur von lokalen Koeffizientensystemen und Faserbündeln. Bonn. Math. Schr. (53) (1972), viii+59.Google Scholar
[19] Meyer, W. Die Signatur von Flächenbündeln. Math. Ann. 201 (1973), 239264.Google Scholar
[20] Morton, H. R. The multivariable Alexander polynomial for a closed braid. In Low-dimensional topology (Funchal, 1998). Contemp. Math. vol. 233. (Amer. Math. Soc., Providence, RI, 1999), pages 167172.CrossRefGoogle Scholar
[21] Murasugi, K. On a certain numerical invariant of link types. Trans. Amer. Math. Soc. 117 (1965), 387422.CrossRefGoogle Scholar
[22] Py, P. Indice de Maslov et théorème de Novikov–Wall. Bol. Soc. Mat. Mexicana (3). 11 (2) (2005), 303331.Google Scholar
[23] Squier, C. C. The Burau representation is unitary. Proc. Amer. Math. Soc. 90 (2) (1984), 199202.Google Scholar
[24] Tristram, A. G. Some cobordism invariants for links. Proc. Cam. Phil. Soc. 66 (1969), 251264.Google Scholar
[25] Turaev, V. G. Quantum invariants of knots and 3-manifolds. de Gruyter Studies in Mathematics. vol.18 (Walter de Gruyter & Co., Berlin, revised edition, 2010).Google Scholar
[26] Wall, C. T. C. Non-additivity of the signature. Invent. Math. 7 (1969), 269274.CrossRefGoogle Scholar