Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T07:51:19.449Z Has data issue: false hasContentIssue false

Cluster sets of set-valued functions

Published online by Cambridge University Press:  24 October 2008

S. R. Harbottle
Affiliation:
Department of Mathematics and Mathematical Statistics, 16 Mill Lane, Cambridge CB2 1SB

Extract

In this paper we shall study the cluster sets of set-valued functions denned on the open unit disc Δ, and we shall, in particular, look at the relationship between the full cluster set and the cluster sets along radial and arbitrary monotonic paths.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Arsove, M.. The Lusin–Privalov theorem for subharmonic functions. Proc. London Math. Soc. (3) 14 (1964), 260270.CrossRefGoogle Scholar
[2]Aupetit, B.. Analytic multivalued functions in Banach algebras and uniform algebras. Adv. in Math. 44 (1982), 1860.CrossRefGoogle Scholar
[3]Aupetit, B. and Zraïbi, A.. Distribution des valeurs des fonctions analytiques multivoques. Studia Math. 79 (1985), 217226.CrossRefGoogle Scholar
[4]Collingwood, E. F.. On sets of maximum indetermination of analytic functions. Math. Z. 67 (1957), 377396.CrossRefGoogle Scholar
[5]Collingwood, E. F.. Addendum: On sets of maximum indetermination of analytic functions. Math. Z. 68 (1958), 498499.CrossRefGoogle Scholar
[6]Garnett, J. B.. Bounded Analytic Functions (Academic Press, 1981).Google Scholar
[7]Gross, W.. Zum Verhalten analytischer Funktionen in der Umgebung singulärer Stellen. Math. Z. 2 (1918), 243294.CrossRefGoogle Scholar
[8]Harbottle, S. R.. Cluster sets of a.m.v. functions. Studia Math., to appear.Google Scholar
[9]Iversen, F.. Sur quelque propriétés des fonctions monogènes au voisinage d'un point singulier. Öfvers. Finska Vetensk.-Soc. Förh. 58A, no. 25 (19151916), 116.Google Scholar
[10]Oka, K.. Note sur les families de functions analytiques multiformes etc. J. Sci. Hiroshima Univ. 4 (1934), 9398.Google Scholar
[11]Ransford, T. J.. Open mapping, inversion and implicit function theorems for analytic multivalued functions. Proc. London Math. Soc. (3) 49 (1984), 537562.CrossRefGoogle Scholar
[12]Ransford, T. J.. On the range of an analytic multivalued function. Pacific J. Math. 123 (2) (1986), 421439.CrossRefGoogle Scholar
[13]Slodkowski, Z.. Analytic set-valued functions and spectra. Math. Ann. 256 (1981), 363386.CrossRefGoogle Scholar