Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T16:22:56.740Z Has data issue: false hasContentIssue false

The classification of reversible-equivariant steady-state bifurcations on self-dual spaces

Published online by Cambridge University Press:  01 September 2008

P. H. BAPTISTELLI*
Affiliation:
Departamento de Matemática, ICMC - USP, Caixa Postal 668, 13560-970, São Carlos-SP, Brazil. e-mail: [email protected]
M. MANOEL
Affiliation:
Departamento de Matemática, ICMC - USP, Caixa Postal 668, 13560-970, São Carlos-SP, Brazil. e-mail: [email protected]
*
Work supported by CNPq Grant 141672/2003-0. Email address: [email protected]

Abstract

In this paper we apply singularity theory methods to the classification of reversible-equivariant steady-state bifurcations depending on one real parameter. We assume that the group of symmetries and reversing symmetries is a compact Lie group Γ, and the equivalence is defined in order to preserve these symmetries and reversing symmetries in the normal forms and their unfoldings. When the representation of Γ is self-dual, we show that the classification can be reduced to the standard equivariant context. In this case, we establish a one-to-one association between the classification of bifurcations in the reversible-equivariant context and the classification of purely equivariant bifurcations related to them. As an application of the results, we obtain the classification of self-dual representations of Z2Z2 and D4 on the plane.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Artés, J. C., Dumortier, F., Herssens, C. and Llibre, J.. The P4 program – Polynomial Planar Phase Portraits, 2000 (http://mat.uab.es/artes/p4/p4.htm).Google Scholar
[2]Baptistelli, P. H. and Manoel, M. G.. Some Results on Reversible-Equivariant Vector Fields. Cadernos de Matemática 6 (2005) 237263.Google Scholar
[3]Broer, H.W., Lunter, G. and Vecter, G.. Equivariant singularity theory with distinguished parameters: two case studies of resonant Hamiltonian systems. Physica 112 (1998) 6480.Google Scholar
[4]Buono, P. L., Lamb, J. S. W. and Roberts, R. M.. Bifurcation and branching of equilibria of reversible equivariant vector fields. In preparation.Google Scholar
[5]Damon, J.. The unfolding and determinacy theorems for subgroups of and Mem. Amer. Math. Soc. 306 Providence, 1984.CrossRefGoogle Scholar
[6]Golubitsky, M. and Schaeffer, D.. Singularities and Groups in Bifurcations Theory. Vol. I, Appl. Math. Sci. 51 Springer-Verlag, New York, 1984.Google Scholar
[7]Golubitsky, M., Stewart, I. and Schaeffer, D.. Singularities and Groups in Bifurcation Theory. Vol. II, Appl. Math. Sci. 69Springer-Verlag, New York, 1985.CrossRefGoogle Scholar
[8]Golubitsky, M. and Roberts, M.. A classification of degenerate Hopf bifurcation with O(2) symmetry. J. Diff. Eq. 69 (1987) 216264.CrossRefGoogle Scholar
[9]Hansmann, H.. The reversible umbilic bifurcation. Physica 111 (1998) 8194.Google Scholar
[10]Hoveijn, I., Lamb, J. S. W. and Roberts, R. M.. Linear normal form theory in eigenspaces of involutory (anti-)automorphisms. J. Diff. Eq. 190 (2003) 182213.CrossRefGoogle Scholar
[11]Jacquemard, A. and Teixeira, M. A.. On singularities of reversible mappings in R3. Dynam. Cont. Dicrete Impuls. Systems 7 (2000) 6596.Google Scholar
[12]Lamb, J. S. W. and Capel, H. W.. Local bifurcations on the plane with reversing point group symmetry. Chaos, Solitions and Fractals 5 (1995) 271293.CrossRefGoogle Scholar
[13]Lamb, J. S. W. and Roberts, R. M.. Reversible equivariant linear systems. J. Diff. Eq. 159 (1999) 239279.CrossRefGoogle Scholar
[14]Manoel, M. and Stewart, I.. Degenerate bifurcations with Z2Z2-symmetry. Internat. J. Bif. Chaos 9 (1999) 16531667.CrossRefGoogle Scholar
[15]Medrado, J. C. R. and Teixeira, M. A.. Symmetric singularities of reversible vector fields in dimension three. Physica D 112 (1998) 122131.CrossRefGoogle Scholar
[16]Teixeira, M. A.. Singularities of reversible vector fields. Physica D 100 (1997) 101118.CrossRefGoogle Scholar
[17]Vanderbauwhede, A.. Local bifurcation and symmetry. Research Notes in Mathematics 75 Pitman, Boston, MA, 1982.Google Scholar