Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T14:32:34.587Z Has data issue: false hasContentIssue false

A class of representations of involutive bialgebras

Published online by Cambridge University Press:  24 October 2008

Michael Schürmann
Affiliation:
Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 294, D-6900 Heidelberg 1, West Germany

Abstract

A class of representations on Fock space is associated to a representation of the *-algebra structure of a cocommutative graded bialgebra with an involution. We prove that the Gelfand–Naimark–Segal (GNS) representation given by the convolution exponential of a conditionally positive linear functional can be embedded into a representation of this class. Our theory generalizes a well-known construction for infinitely divisible positive definite functions on a group. Applying our general result, we obtain a complete characterization of the GNS representations given by infinitely divisible states on involutive Lie superalgebras.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abe, E.Hopf Algebras (Cambridge University Press, 1980).Google Scholar
[2]Accardi, L.. Schürmann, M. and Von Waldenfels, W.. Quantum independent increment processes on superalgebras. Math. Z. 198 (1988), 451477.CrossRefGoogle Scholar
[3]Araki, H.. Factorizable representation of current algebra. Publ. Res. Inst. Math. Sci. 5 (1970), 361422.Google Scholar
[4]Bourbaki, N.. Elements of Mathematics, Algebra (Hermann, 1973).Google Scholar
[5]Bratelli, O. and Robinson, D. W.. Operator Algebras and Quantum Statistical Mechanics, vol. 2. Texts and Monographs in Physics (Springer-Verlag, 1981).CrossRefGoogle Scholar
[6]Canisius, J.. Algebraische Grenzwertsätze und unbegrenzt teilbare Funktionale. Diplomarbeit, Universität Heidelberg(1978).Google Scholar
[7]Giri, N. and Von Waldenfels, W.. An algebraic version of the central limit theorem. Z. Wahrsch. verw. Gebiete 42 (1978), 129134.CrossRefGoogle Scholar
[8]Guichardet, A.. Symmetric Hilbert Spaces and Related Topics. Lecture Notes in Math. vol. 261 (Springer-Verlag, 1972).CrossRefGoogle Scholar
[9]Hegerfeld, G. C.. Noncommutative analogs of probabilistic notions and results. J. Fund. Anal. 64 (1985), 436456.Google Scholar
[10]Hudson, R. L. and Parthasarathy, K. R.. Quantum Ito's formula and stochastic evolutions. Comm. Math. Phys. 93 (1984), 301323.Google Scholar
[11]Jacobson, N.. Lie Algebras (Wiley, 1962).Google Scholar
[12]Joni, S. A. and Rota, G.-C.. Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61 (1979), 93139.CrossRefGoogle Scholar
[13]Kac, V. G.. Lie superalgebras. Adv. in Math. 26 (1977), 896.Google Scholar
[14]Mathon, D. and Streater, R. F.. Infinitely divisible representations of Clifford algebras. Z. Wahrsch. verw. Gebiete 20 (1971), 308316.Google Scholar
[15]Milnor, J. W. and Moore, J. C.. On the structure of Hopf algebras. Ann. of Math. 81 (1965), 211264.CrossRefGoogle Scholar
[16]Parthasarathy, K. R. and Schmidt, K.. Positive Definite Kernels, Continuous Tensor Products, and Central Limit Theorems of Probability Theory. Lecture Notes in Math. vol. 272 (Springer-Verlag, 1972).CrossRefGoogle Scholar
[17]Peterson, B. and Taft, E. J.. The Hopf algebra of linearly recursive sequences. Aequationes Math. 20 (1980), 117.Google Scholar
[18]Schürmann, M.. Positive and conditionally positive linear functionals on coalgebras. In Quantum Probability and Applications II, Lecture Notes in Math. vol. 1136 (Springer-Verlag, 1985), pp. 475492.Google Scholar
[19]Schürmann, M.. Noncommutative stochastic processes with independent and stationary increments satisfy quantum stochastic differential equations. (Submitted for publication.)Google Scholar
[20]Schürmann, M.. Noncommutative stochastic processes with independent and stationary additive increments. (Submitted for publication.)Google Scholar
[21]Schürmann, M. and Von Waldenfels, W.. A central limit theorem on the free Lie group. In Quantum Probability and Applications III, Lecture Notes in Math. vol. 1303 (Springer-Verlag, 1988), pp. 300318.CrossRefGoogle Scholar
[22]Streater, R. F.. Current commutation relations, continuous tensor products and infinitely divisible group representations. In Local Quantum Theory (Academic Press, 1969), pp. 247263.Google Scholar
[23]Streater, R. F.. Infinitely divisible representations of Lie algebras. Z. Wahrsch. verw. Gebiete 19 (1971), 6780.CrossRefGoogle Scholar
[24]Sweedler, M. E.. Hopf Algebras (Benjamin, 1969).Google Scholar
[25]Von Waldenfels, W.. An algebraic central limit theorem in the anti-commuting case. Z. Wahrsch. verw. Gebiete 42 (1978), 135140.CrossRefGoogle Scholar
[26]Von Waldenfels, W.. Positive and conditionally positive sesquilinear forms on anticocommutative coalgebras. In Probability Measures on Groups VII, Lecture Notes in Math. vol. 1064 (Springer-Verlag, 1984), pp. 450466.CrossRefGoogle Scholar