Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T16:01:27.439Z Has data issue: false hasContentIssue false

The Catalan simplicial set

Published online by Cambridge University Press:  03 December 2014

MITCHELL BUCKLEY
Affiliation:
Department of Mathematics, Macquarie University NSW 2109, Australia. e-mails: [email protected]; [email protected]; [email protected]; [email protected]
RICHARD GARNER
Affiliation:
Department of Mathematics, Macquarie University NSW 2109, Australia. e-mails: [email protected]; [email protected]; [email protected]; [email protected]
STEPHEN LACK
Affiliation:
Department of Mathematics, Macquarie University NSW 2109, Australia. e-mails: [email protected]; [email protected]; [email protected]; [email protected]
ROSS STREET
Affiliation:
Department of Mathematics, Macquarie University NSW 2109, Australia. e-mails: [email protected]; [email protected]; [email protected]; [email protected]

Abstract

The Catalan numbers are well known to be the answer to many different counting problems, and so there are many different families of sets whose cardinalities are the Catalan numbers. We show how such a family can be given the structure of a simplicial set. We show how the low-dimensional parts of this simplicial set classify, in a precise sense, the structures of monoid and of monoidal category. This involves aspects of combinatorics, algebraic topology, quantum groups, logic, and category theory.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bénabou, J.Introduction to bicategories. Lecture Notes in Math. 47 (Springer-Verlag, 1967), 177.Google Scholar
[2]Burroni, A.T-catégories (catégories dans un triple). Cahiers Topologie Géom. Différentielle Catég. 12 (1971), 215321.Google Scholar
[3]Day, B. and Street, R.Quantum categories, star autonomy and quantum groupoids. In Galois Theory, Hopf Algebras and Semiabelian Categories. Fields Institute Communications 43 (American Math. Soc. 2004), 187226.Google Scholar
[4]Cegarra, A. M. and Heredia, B. A.Geometric realisations of tricategories. Algebr. Geom. Topol. 14 (2014), 19972064. (see http://arxiv.org/abs/1203.3664).Google Scholar
[5]Donaghey, R. and Shapiro, L.Motzkin numbers. J. Combin. Theory Series A 23 (1977), no. 3, 291301.Google Scholar
[6]Gabriel, P. and Zisman, M.Calculus of fractions and homotopy theory. Ergeb. der Math. u. Grenzgeb. vol. 35 (Springer, 1967).Google Scholar
[7]Gordon, R., Power, A. J. and Street, R.Coherence for tricategories. Mem. Amer. Math. Soc. 117 no. 558 (1995), vi+81 pp.Google Scholar
[8]Grandis, M.Lax 2-categories and directed homotopy. Cahiers Topologie Géom. Différentielle Catég. 47 (2) (2006), 107128.Google Scholar
[9]Johnson, M. Coherence geometrically: thoughts on last week's talks. Talk in the Australian Category Seminar (6 March, 2013).Google Scholar
[10]Kelly, G. M.On MacLane's conditions for coherence of natural associativities, commutativities, etc. J. Algebra 1 (1964), 397402.CrossRefGoogle Scholar
[11]Lack, S. and Street, R.Skew monoidales, skew warpings and quantum categories. Theory Appl. Categ. 26 (2012), 385402.Google Scholar
[12]Lurie, J.Higher Topos Theory. (Princeton University Press, 2009).CrossRefGoogle Scholar
[13]Lurie, J. Higher algebra. available at http://www.math.harvard.edu/lurie/.Google Scholar
[14]Mac Lane, S.Natural associativity and commutativity. Rice University Studies 49 (1963), 2846.Google Scholar
[15]Solomon, A.Catalan monoids, monoids of local endomorphisms and their presentations. Semigroup Forum 53 (1996), 351368.Google Scholar
[16]Stanley, R.Enumerative Combinatorics. Cambridge Studies in Advanced Math., vol. 2. 62 (1999).CrossRefGoogle Scholar
[17]Stanley, R. Catalan Addendum. http://www-math.mit.edu/rstan/ec/catadd.pdf (retrieved June 2013).Google Scholar
[18]Szlachányi, K.Skew-monoidal categories and bialgebroids. Adv Math. 231 (2012), 16941730.Google Scholar
[19]Tamari, D.The algebra of bracketings and their enumeration. Nieuw Archief voor Wiskunde. Vierde Serie 10 (1962), 131146.Google Scholar
[20]Verity, D.Complicial sets: characterising the simplicial nerves of strict ω-categories. Mem. Amer. Math. Soc. 193 (2008), no. 905.Google Scholar