Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T19:10:55.839Z Has data issue: false hasContentIssue false

Bubbles of Congruent Primes

Published online by Cambridge University Press:  04 November 2014

FRANK THORNE*
Affiliation:
Department of Mathematics, University of South Carolina, 1523 Greene Street, Columbia, SC 29208U.S.A e-mail: [email protected]

Abstract

In [15], Shiu proved that if a and q are arbitrary coprime integers, then there exist arbitrarily long strings of consecutive primes which are all congruent to a modulo q. We generalize Shiu's theorem to imaginary quadratic fields, where we prove the existence of “bubbles” containing arbitrarily many primes which are all, up to units, congruent to a modulo q.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]de Bruijn, N. G.On the number of positive integers ⩽ x and free of prime factors ⩾ y. Indag. Math. 13 (1951), 5060.CrossRefGoogle Scholar
[2]Cojocaru, A. C. and Murty, M. R.An Introduction to Sieve Methods and Their Applications. (Cambridge University Press, Cambridge, 2005).CrossRefGoogle Scholar
[3]de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O.Computational Geometry: Algorithms and Applications. (Springer-Verlag, Berlin, 2000).CrossRefGoogle Scholar
[4]Fogels, E.On the zeros of Hecke's L-functions I. Acta Arith. 7 (1961), 131147.CrossRefGoogle Scholar
[5]Fogels, E.On the zeros of L-functions. Acta Arith. 11 (1965), 6796; corrigendum, Acta Arith. 14 (1967/1968), 435.CrossRefGoogle Scholar
[6]Gallagher, P. X.A large sieve density estimate near σ = 1. Invent. Math. 11 (1970), 329339.CrossRefGoogle Scholar
[7]Granville, A.Unexpected irregularities in the distribution of prime numbers. Proceedings of the International Congress of Mathematicians (Zürich, 1994), 388–399. (Birkhäuser, Basel, 1995).CrossRefGoogle Scholar
[8]Granville, A. and Soundararajan, K.An uncertainty principle for arithmetic sequences. Ann. of Math. 165 (2007), no. 2, 593635.CrossRefGoogle Scholar
[9]Iwaniec, H. and Kowalski, E.Analytic number theory. Amer. Math. Soc. (Providence, 2005).CrossRefGoogle Scholar
[10]Krause, U.Abschätzungen für die Funktion ΨK(x, y) in algebraischen Zahlkörpern. Manuscripta Math. 69 (1990), 319331.CrossRefGoogle Scholar
[11]Maier, H.Chains of large gaps between consecutive primes. Adv. in Math. 39 (1981), 257269.CrossRefGoogle Scholar
[12]Maier, H.Primes in short intervals. Michigan Math. J. 32 (1985), 221225.CrossRefGoogle Scholar
[13]Neukirch, J.Algebraic number theory. (Springer-Verlag, Berlin, 1999).CrossRefGoogle Scholar
[14]Rosen, M.A generalisation of Mertens' theorem. J. Ramanujan Math. Soc. 14 (1999), 119.Google Scholar
[15]Shiu, D. K. L.Strings of congruent primes. J. London Math. Soc. 61 (2000), 359373.CrossRefGoogle Scholar
[16]Tenenbaum, G.Introduction to Analytic and Probabilistic Number Theory. (Cambridge University Press, Cambridge, 1995).Google Scholar