Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T14:28:33.357Z Has data issue: false hasContentIssue false

Boundary layers in micropolar liquids

Published online by Cambridge University Press:  24 October 2008

A. J. Willson
Affiliation:
University of Leicester

Abstract

Consideration is given to the steady flow of a micropolar liquid near a rigid boundary. It is shown that while micro-inertia itself is not important, nevertheless, some properties of the microstructure do play a vital rôle in determining the structure of the boundary layer. The Kármán—Polhausen method is used to provide an estimate of the shear stress at the boundary, and detailed calculations are given for flow near stagnation. The important significance of the standard length of the micropolar liquid is demonstrated for this flow, as for other flows in this medium.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Eringen, A. C.J. Math. Mech. 16 (1966), 1.Google Scholar
(2)Willson, A. J.J. Appl. Sci. Res. 20 (1969), 338.CrossRefGoogle Scholar
(3)Willson, A. J.Proc. Cambridge Philos. Soc. 64 (1968), 513.CrossRefGoogle Scholar
(4)Hartree, D. R.Proc. Cambridge Philos. Soc. 33 (1937), 223.CrossRefGoogle Scholar
(5)Beard, D. W. and Walters, K.Proc. Cambridge Philos. Soc. 60 (1964), 667.Google Scholar
(6)Meksyn, D.Proc. Roy. Soc. Ser. A 237 (1956), 543.Google Scholar
(7)Chen-Chi, HsuJ. Fluid Mech. 27 (1967), 445.Google Scholar
(8)Weyl, H.Proc. Nat. Acad. Sci., U.S.A. 27 (1941), 578.Google Scholar
(9)Davies, T. V.Proc. Boy. Soc. Ser. A 273 (1963), 496.Google Scholar
(10)James, E. M.Proc. Roy. Soc. Ser. A 273 (1963), 509.Google Scholar
(11)Chawla, Sahib Singh.Proc. Cambridge Philos. Soc. 63 (1967), 513.CrossRefGoogle Scholar
(12)Glauert, M. B.J. Fluid Mech. 12 (1962), 625.CrossRefGoogle Scholar