Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T19:31:23.411Z Has data issue: false hasContentIssue false

Arithmetic on curves with complex multiplication by √ − 2

Published online by Cambridge University Press:  24 October 2008

A. R. Rajwade
Affiliation:
Panjab University, Chandigarh, India

Extract

This paper is a contribution to the verification of conjectures of Birch and Swinnerton-Dyer about elliptic curves (1). The evidence that they produce is largely derived from curves with complex multiplication by i. It is natural to consider other kinds of complex multiplications and here we shall make a start on the case when the ring of complex multiplications is isomorphic to the ring Z[σ], where σ2 = − 2.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Birch, B. J. and Swinnerton-Dyer, H. P. F.Notes on elliptic curves, I. J. Reine Angew Math. 212 (1963), 725, and II. J. Seine Angew Math. 218 (1965), 79–108.CrossRefGoogle Scholar
(2)Cassels, J. W. S.Arithmetic on an elliptic curve. Proc. Intern. Congress Math., Stockholm (1962), 234246.Google Scholar
(3)Cassels, J. W. S.Diophantine equations with special reference to elliptic curves. J. London Math. Soc. 41 (1966), 193291.CrossRefGoogle Scholar
(4)Cassels, J. W. S.A note on the division values of (u). Proc. Cambridge Philos. Soc. 45 (1948), 167172.CrossRefGoogle Scholar
(5)Deuring, M.Die Typen der Multiplikatorenringe elliptische Funktionenkorper. Abh. Math. Sem. Univ. Hamburg 14 (1941), 197272.CrossRefGoogle Scholar
(6)Deuring, M.Die Zetafunktion einer algebraichen Kurve von Geschlechte Eins, I, II, III, IV. Nachr Akad. Wiss Göttingen Math.-Phys Kl II (1953), 8594; (1955), 13–42; (1956), 37–76; (1957), 55–80.Google Scholar
(7)Weber, H.Algebra, vol. 3 (2nd edn, Braunschweig, 1908).Google Scholar
(8)Whittaker, E. T. and Watson, G. N.Modern Analysis (Cambridge, 1902).Google Scholar