Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T07:35:08.368Z Has data issue: false hasContentIssue false

Another proof that the inclusion I: ι1→ι2 is 0-radonifying

Published online by Cambridge University Press:  24 October 2008

D. J. H. Garling
Affiliation:
St John's College, Cambridge

Extract

Kwapień(2) and Schwartz (3) have shown that the inclusion mapping I: ι1→ι2 is 0-radonifying. We shall give another proof of this, using an inequality due to Khint-chine(1).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Khintchine, A.Über dyadische Bruche. Math. Z. 18 (1923), 109116.CrossRefGoogle Scholar
(2)Kwapień, S.Complément au théorème de Sazonov-Minlos. C.R. Acad. Sci., Paris Sér. A, 267 (1968), 698700.Google Scholar
(3)Schwartz, L.Probabilitées cylindriques et applications radonifiantes. C.R. Acad. Sci. Paris Sér. A, 268 (1969), 646648.Google Scholar
(4)Schwartz, L.Applications radonifiantes (Séminaire Laurent Schwartz, École Polytechnique 19691970).Google Scholar