Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T04:18:47.507Z Has data issue: false hasContentIssue false

An update on the sum-product problem

Published online by Cambridge University Press:  11 October 2021

MISHA RUDNEV
Affiliation:
School of Mathematics, Fry Building, University of Bristol, Bristol, BS8, 1UG e-mail: [email protected]
SOPHIE STEVENS
Affiliation:
Johann Radon Institut, (RICAM), Altenberger Strasse 69, 4040 Linz, Austria e-mail: [email protected]

Abstract

We improve the best known sum-product estimates over the reals. We prove that

\[\max(|A+A|,|A+A|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,,\]
for a finite $A\subset \mathbb {R}$ , following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques.

Furthermore,

\[|AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,.\]
Besides, for a convex set A we show that
\[|A+A|\geq |A|^{\frac{30}{19}-o(1)}\,.\]
This paper is largely self-contained.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Partially supported by the Leverhulme Trust Grant RPG–2017–371.

Supported by the Austrian Science Fund FWF Project P 30405-N32.

References

Balog, A.. A note on sum-product estimates, Publ. Math. Debrecen 79, 3–4 (2011), 283–289.Google Scholar
Balog, A. and Wooley, T.D.. A low–energy decomposition theorem. Quart. J. Math., 68 1 (2017), 207226.Google Scholar
Elekes, G.. On the number of sums and products. Acta Arith. 81, (1997), 365–367.10.4064/aa-81-4-365-367CrossRefGoogle Scholar
Elekes, G. and Ruzsa, I. Z.. Few sums, many products. Studia Sci. Math. Hungar. 40, 3 (2003), 301–308.Google Scholar
Erdős, P.. Problems in number theory and combinatorics Proceedings of the Sixth Manitoba Conference on Numerical Mathematics, Congress. Numer. 18, pp. 35–58 (Utilitas Math., Winnipeg, 1977).Google Scholar
Erdős, P. and Szem erédi, E.. On sums and products of integers. Stud. Pure Math. (Birkhäuser, Basel, 1983), 213–218.10.1007/978-3-0348-5438-2_19CrossRefGoogle Scholar
Ford, K., The distribution of integers with a divisor in a given interval, Annals of Math., 168, (2008), 367–433.10.4007/annals.2008.168.367CrossRefGoogle Scholar
Iosevich, A., Roche–Newton, O. and Rudnev, M., On discrete values of bilinear forms, Sb. Math. 209, 10 (2018), 1482–1497.10.1070/SM8966CrossRefGoogle Scholar
Katz, N. H. and Koester, P., On additive doubling and energy, SIAM J. Discrete Math., 24, 4 (2010), 16841693.10.1137/080717286CrossRefGoogle Scholar
Konyagin, S.V. and Shkredov, I.D.. On sum sets of sets. having small product sets, Trans. Steklov Math. Inst., 3, 290 (2015), 304316.10.1134/S0371968515030255CrossRefGoogle Scholar
Konyagin, S.V. and Shkredov, I.D.. New results on sum–products in $\mathbb R$ , Proc. Steklov Inst. Math., 294, 78, (2016), 87–98.10.1134/S0081543816060055CrossRefGoogle Scholar
Murphy, B. and Roche–Newton, O. and Shkredov, I.D.. Variations on the sum–product problem I, SIAM J. Discrete Math., 29, 1 (2015), 514–540.Google Scholar
Murphy, B. and Roche–Newton, O. and Shkredov, I.D.. Variations on the sum–product problem II, SIAM J. Discrete Math., 31, 3 (2017), 1878–1894.Google Scholar
Murphy, B., Rudnev, M. and Shkredov, I. D., Shteinikov, Yu. N.. On the few products, many sums problem, J. Theor. Nombres Bordeauy, 31, 3 (2019), 573–602.Google Scholar
Nathanson, M.. On sums and products of integers, Proc. Amer. Math. Soc. 125, 1 (1997), 9–16.10.1090/S0002-9939-97-03510-7CrossRefGoogle Scholar
Olmezov, K. I.. A little improvement of the lower bound for sumset of convex set, Mat. Zametki, Accepted for publication, http://mi.mathnet.ru/mz12635.Google Scholar
Olmezov, K. I.. Additive properties of slowly growing convex sets, (in Russian). To appear in Mat. Zametki 110, 6 (2021), 1–18.Google Scholar
Olmezov, K.I., Semchankau, A.S. and Shkredov, I.D.. On popular sums and differences for sets with small multiplicative doubling. Math. Notes 108, (2020), 557565. https://doi.org/10.1134/S000143462009028X.CrossRefGoogle Scholar
Ortega y Gasset, J.. What is Philosophy? (W. W. Norton & Company; 1st American edition 17 Jun. 1964).Google Scholar
Rudnev, M., Shakan I.D., G. Shkredov. Stronger sum-product inequalities for small sets, Proc. Amer. Math. Soc. 148, (2020), 1467–1479.10.1090/proc/14902CrossRefGoogle Scholar
Rudnev, M., Stevens, S. and Shkredov, I.D.. On the energy variant of the sum-product conjecture, Rev. Mat. Iberoam. 36, 1 (2020), 207–232.Google Scholar
Schoen, T. and Shkredov, I. D., On sumsets of convex sets, Combinatorics, Probability and Computing 20, (5) (2011), 793798.10.1017/S0963548311000277CrossRefGoogle Scholar
Shakan, G.. On higher energy decompositions and the sum-product phenomenon, Math. Proc. Camb. Phil. Soc. 167, 3 (2019), 599–617.10.1017/S0305004118000506CrossRefGoogle Scholar
Shkredov, I. D.. Some new results on higher energies, Trans Nosci. Math. Soc. 74, 1 (2013), 35–73.Google Scholar
Shkredov, I.D.. On sums of Szemerédi–Trotter -sets, Proc. Steklov Institute Math. 289 (2015), 318–327.10.1134/S0371968515020181CrossRefGoogle Scholar
Shkredov, I. D.. Some remarks on the Balog–Wooley decomposition theorem and quantities $D^+$ , $D^\times$ , Proc. Steklov Inst. Math. 208(Suppl 1), 74 (2017), 74–90.10.1134/S0081543817070057CrossRefGoogle Scholar
Solymosi, J.. Bounding multiplicative energy by the sumset, Adv. Math. 222, 2 (2009), 402408.10.1016/j.aim.2009.04.006CrossRefGoogle Scholar
Solymosi, J. and Tardos, G.. On the number of k-rich transformations, Computational geometry (SCG’07), 227–231, ACM (New York, 2007). Adv. Math. 222, 2 (2009), 402–408.10.1016/j.aim.2009.04.006CrossRefGoogle Scholar
Szemerédi, E. and Trotter, W. T.. Extremal problems in discrete geometry, Combinatorica 3 (1983), 381392.10.1007/BF02579194CrossRefGoogle Scholar