Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-09T20:35:01.870Z Has data issue: false hasContentIssue false

An interpretation of the Kerr metric in general relativity

Published online by Cambridge University Press:  24 October 2008

R. H. Boyer
Affiliation:
University of Liverpool
T. G. Price
Affiliation:
University of Liverpool

Extract

The preceding paper ((1)) dealt with some general properties of the gravitational field of a rotating fluid mass. An interesting example of a vacuum solution that might be the exterior field of some rotating body was recently found by Kerr ((4)). It was natural to apply the preceding theory to the Kerr solution. This paper deals with other aspects of that solution, particularly the behaviour of its bounded geodesics (planetary orbits). It would seem desirable to know what sort of rotating body could be a source of the Kerr field. It will appear that one of the parameters in Kerr's solution can plausibly be related to the angular momentum per unit mass of a uniformly rotating sphere, the other parameter being a measure of the mass of the sphere.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Boyer, R. H.Rotating fluid masses in general relativity. Proc. Cambridge Philos. Soc. 61 (1965), 527.CrossRefGoogle Scholar
(2)Cattaneo, C.Dérivation transverse et grandeurs relatives en relativité générale. C.R. Acad. Sci., Paris, 248 (1959), 197199.Google Scholar
(3)Kalitzin, N. St.Über den Einfluss der Eigenrotation des Zentralkörpers auf die Bewegung der Satelliten nach der Einsteinschen Gravitationstheorie. Nuovo Cimento, (10) 9 (1958), 365374.CrossRefGoogle Scholar
(4)Kerr, R. P.Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 9 (1963), 237238.CrossRefGoogle Scholar
(5)Landau, L. & Lifshitz, E.The classical theory of fields (Addison–Wesley, 1st ed.; Cambridge, Mass., 1951).Google Scholar
(6)Lense, J. & Thirring, H.Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift, 19 (1918), 156163.Google Scholar
(7)Møller, C.The theory of relativity (Clarendon Press; Oxford, 1952).Google Scholar