Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:40:16.508Z Has data issue: false hasContentIssue false

Towards Sub-cellular Modeling with Delaunay Triangulation

Published online by Cambridge University Press:  03 February 2010

Get access

Abstract

In this article a novel model framework to simulate cells and their internal structure is described. The model is agent-based and suitable to simulate single cells with a detailed internal structure as well as multi-cellular compounds. Cells are simulated as a set of many interacting particles, with neighborhood relations defined via a Delaunay triangulation. The interacting sub-particles of a cell can assume specific roles – i.e., membrane sub-particle, internal sub-particle, organelles, etc –, distinguished by specific interaction potentials and, eventually, also by the use of modified interaction criteria. For example, membrane sub-particles may interact only on a two-dimensional surface embedded on three-dimensional space, described via a restricted Delaunay triangulation. The model can be used not only to study cell shape and movement, but also has the potential to investigate the coupling between internal space-resolved movement of molecules and determined cell behaviors.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Miller, M. J., Wei, S. H., Parker, I. Cahalan, M. D.. Two photon imaging of lymphocyte motility and antigen response in intact lymph node . Science 296 (2002), 18691873 CrossRefGoogle Scholar
Stoll, S., Delon, J., Brotz, T. M. Germain, R. N.. Dynamic Imaging of T Cell-Dendritic Cell Interactions in Lymph Nodes . Science 296 (2002), 18731876 CrossRefGoogle Scholar
von Andrian, U. H.. T cell activation in six dimensions . Science 296 (2002), 18151817 CrossRefGoogle ScholarPubMed
Murphy, R. F.. Putting proteins on the map . Nat. Biotechnol. 24 (2006), 12231224 CrossRefGoogle Scholar
Schubert, W. et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy . Nat. Biotechnol. 24 (2006), 12701278 CrossRefGoogle ScholarPubMed
Alt, W. Tranquillo, R. T.. Basic morphogenetic system modeling shape changes of migrating cells: how to explain fluctuating lamellipodial dynamics . Journal of Biol. Systems 3 (1995), No. 4 905916 CrossRefGoogle Scholar
Figge, M. T., Garin, A., Gunzer, M., Kosco-Vilbois, M., Toellner, K.-M. Meyer-Hermann, M.. Deriving a germinal center lymphocyte migration model from two-photon data . Journal of Exp. Med. 205 (2008), No. 13, 30193029 CrossRefGoogle Scholar
Meyer-Hermann, M., Figge, M. T. Toellner, K.-M.. Germinal centres seen through the mathematical eye: B cell models on the catwalk . Trends in Immunology 30 (2009), No. 4, 157164 CrossRefGoogle ScholarPubMed
Graner, F. Glazier, J. A.. Simulation of biological cell sorting using a two-dimensional extended Potts model . Phys. Rev. Lett. 69 (1992), No. 13, 20132016 CrossRefGoogle Scholar
Meyer-Hermann, M. E. Maini, P. K.. Interpreting two-photon imaging data of lymphocyte motility . Phys. Review E 71 (2005), No. 6, 061912061923 CrossRefGoogle Scholar
Meineke, F. A., Potten, C. S. Loeffler, M.. Cell migration and organization in the intestinal crypt using a lattice-free model . Cell Prolif. 34 (2001), No. 4, 253266 CrossRefGoogle ScholarPubMed
Beyer, T. Meyer-Hermann, M.. Mechanisms of organogenesis of primary lymphoid follicles . Int. Immunol. 20 (2008), No. 4, 615623 CrossRefGoogle ScholarPubMed
M. Bock, A. K. Tyagi, J.-U. Kreft, W. Alt. Generalized Voronoi tessellation as a model of two-dimensional cell tissue dynamics. arXiv:0901.4469v2 [physics.bio-ph].
Galle, J., Hoffmann, M. Aust, G.. From single cells to tissue architecture – a bottom-up approach to modeling the spatio-temporal organisation of complex multi-cellular systems . J. Math. Biol. 58 (2009), 261283 CrossRefGoogle Scholar
Newman, T. J.. Modeling multicellular systems using subcellular elements . Mathematical Biosciences and Engineering 2 (2005), No. 3, 611622 CrossRefGoogle ScholarPubMed
S, S. A., ersius, Newman, T. J.. Modeling cell rheology with the Subcellular Element Model . Phys. Biol. 5 (2008), No. 1 , 015002015014 Google Scholar
Ingber, D. E.. Cellular tensegrity I. Cell structure and hierarchical systems biology . J. Cell Sci. 116 (2003), 11571173 CrossRefGoogle ScholarPubMed
Ingber, D. E.. Tensegrity II. How structural networks inuence cellular information-processing networks . J. Cell Sci. 116 (2003), 13971408 CrossRefGoogle ScholarPubMed
Schaller, G., Meyer-Hermann, M.. Kinetic and dynamic Delaunay tetrahedralizations in three dimensions . Comput. Phys., Commun. 162 (2004), No. 1 , 923. CrossRefGoogle Scholar
Beyer, T., Schaller, G., Deutsch, A. Meyer-Hermann, M.. Parallel dynamic and kinetic regular triangulation in three dimensions . Comput. Phys. Commun. 172 (2005), No. 2, 86108 CrossRefGoogle Scholar
A. Okabe, B. Boots, K. Sugihara, S. N. Chiu. Spatial tessellations: concepts and applications of Voronoi diagrams. Probability and Statistics. John Wiley & Sons, Inc., New York, 1992.
Mücke, E.. A robust implementation for three-dimensional Delaunay triangulations . Internat. J. Comput. Geom. Appl. 2 (1998), No. 8, 255276 CrossRefGoogle Scholar
F. Cazals e J. Giesen. Delaunay triangulation based surface reconstruction: ideas and algorithms. Institut National De Recherche En Informatic et en AutomatiqueRapport de recherche No. 5393 (2004).
Meyer-Hermann, M.. Delaunay-Object-Dynamics: cell mechanics with a 3D kinetic and dynamic weighted Delaunay-triangulation . Curr. Top. Dev. Biol. 81 (2008), 373399. CrossRefGoogle ScholarPubMed
Beyer, T. Meyer-Hermann, M.. The treatment of non-flippable configurations in three dimensional regular triangulations . WSEAS Trans. Syst. 5 (2006), No. 5, 11001107 Google Scholar
Schaller, G. Meyer-Hermann, M.. Multicellular tumor spheroid in an off-lattice Voronoi/Delaunay cell model . Phys. Rev. E 71 (2005), No. 5, 051910051925 CrossRefGoogle Scholar
Reddy, G. V., Heisler, M. G., Ehrhardt, D. W. Meyerowitz, E. M.. Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana . Development 131 (2004), No. 17, 42254237 CrossRefGoogle ScholarPubMed
N. Amenta, M. Bern, M. Kamvysselis. A new Voronoi-based surface reconstruction algorithm. SIGGRAPH ’98: Proceedings of the 25th annual conference on computer graphics and interactive techniques, ACM, New York, 1998.
Amenta, N. Bern, M.. Surface reconstruction by Voronoi filtering . Discrete and Computational Geometry 22 (1999), No. 4, 481504 CrossRefGoogle Scholar
G. Grise, M. Meyer-Hermann. Surface reconstruction using Delaunay triangulation for applications in life sciences. Submitted (2009).
Verlet, L.. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules . Phys. Rev. 159 (1967), No. 1 , 98103 CrossRefGoogle Scholar
Verlet, L.. Computer experiments on classical fluids. II. Equilibrium correlation functions . Phys. Rev. 165 (1968), No. 1 , 201214 CrossRefGoogle Scholar
Hsiang, Wu-Yi. On the sphere packing problem and the proof of Kepler’s conjecture . Internat. J. Math. 4 (1993), No. 5, 739831 CrossRefGoogle Scholar