Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T04:09:10.799Z Has data issue: false hasContentIssue false

Stability Analysis of Cell Dynamics in Leukemia

Published online by Cambridge University Press:  25 January 2012

H. Özbay*
Affiliation:
Dept. of Electrical and Electronics Eng., Bilkent University, Ankara, 06800, Turkey
C. Bonnet
Affiliation:
INRIA Saclay - Île-de-France, Equipe DISCO, LSS - SUPELEC 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France
H. Benjelloun
Affiliation:
Ecole Centrale Paris, Grande Voie des Vignes, Châtenay-Malabry, France
J. Clairambault
Affiliation:
INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105, 78153 Le Chesney INSERM team U 776 “Biological Rhythms and Cancers”, Hôpital Paul-Brousse 14 Av. Paul-Vaillant-Couturier, 94807 Villejuif, France
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

In order to better understand the dynamics of acute leukemia, and in particular to findtheoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia,we investigate stability of a system modeling its cell dynamics.

The overall system is a cascade connection of sub-systems consisting of distributeddelays and static nonlinear feedbacks. Earlier results on local asymptotic stability areimproved by the analysis of the linearized system around the positive equilibrium. For thenonlinear system, we derive stability conditions by using Popov, circle and nonlinearsmall gain criteria. The results are illustrated with numerical examples andsimulations.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaoui, H. T., Yafia, R.. Stability and Hopf bifurcation in an approachable haematopoietic stem cells model. Mathematical Biosciences, 206 (2007), 176184. CrossRefGoogle Scholar
Adimy, M., Crauste, F.. Modeling and asymptotic stability of a growth factor-dependent stem cell dynamics model with distributed delay. Discrete and Continuous Dynamical Systems - Series B, 8 (2007), No. 1, 1938. Google Scholar
Adimy, M., Crauste, F.. Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulations. Mathematical and Computer Modelling, 49 (2009), No. 11–12, 21282137. CrossRefGoogle Scholar
Adimy, M., Crauste, F., El Abdllaoui, A.. Asymptotic behavior of a discrete maturity structured system of hematopoietic stem cell dynamics with several delays. Mathematical Modelling of Natural Phenomena, 1, (2006), No. 2, 1-19. CrossRefGoogle Scholar
Adimy, M., Crauste, F., El Abdllaoui, A.. Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. J. Biological Systems, 16 (2008), No. 3, 395424. CrossRefGoogle Scholar
Adimy, M., Crauste, F., El Abdllaoui, A.. Boundedness and Lyapunov function for a nonlinear system of hematopoietic stem cell dynamics C. R. Acad. Sci. Paris, Ser. I, 348 (2010), No. 7-8, 373377. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Marquet, C.. Asymptotic behavior and stability switch for a mature-immature model of cell differentiation. Nonlinear Analysis : Real World Applications, 11 (2010), No. 4, 29132929. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Ruan, S.. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (2005), No. 4, 13281352. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Ruan, S.. Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases. Bulletin of Mathematical Biology, 68 (2006), No. 8, 23212351. CrossRefGoogle ScholarPubMed
P-A. Bliman. Extension of Popov absolute stability criterion to nonautonomous systems with delays. INRIA Technical Report 3625, February 1999.
P-A. Bliman. Robust absolute stability of delay systems. Nonlinear Control in the Year 2000, A. Isidori, F. Lamnabhi-Lagarrigue, W. Respondek, eds., LNCIS vol. 258, Springer Verlag, 2000, 207–237.
Boman, B. M., Wicha, M. S.. Cancer stem cells : a step toward the cure. J. Clinical Oncology, 26 (2008), No. 17, 27952799. CrossRefGoogle ScholarPubMed
Bonnet, D., Dick, J. E.. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3 (1997), No. 7, 730737. CrossRefGoogle ScholarPubMed
Čebotarev, N. G., Meĭman, N. N.. The Routh-Hurwitz problem for polynomials and entire functions. (in Russian) Trudy Mat. Inst. Steklov., 26 (1949), 3-331. Google Scholar
Colijn, C., Mackey, M. C.. A mathematical model of hematopoiesis : I. Periodic chronic myelogenous leukemia. J. Theoretical Biology, 237 (2005), No. 2, 117132. CrossRefGoogle ScholarPubMed
C. Corduneanu. Integral equations and stability of feedback systems. Academic Press, New York, 1973.
Curtain, R. F., Logemann, H., Staffans, O.. Stability results of Popov-type for infinite-dimensional systems with applications to integral control. Proc. London Math. Soc., 86 (2003), No. 3, 779816. CrossRefGoogle Scholar
C. A. Desoer, M. Vidyasagar. Feedback systems : input-output properties. SIAM Classics in Applied Mathematics, 55, SIAM, 2009.
Dingli, D., Michor, F.. Successful therapy must eradicate cancer stem cells. Stem Cells, 24 (2006), No. 12, 26032610. CrossRefGoogle ScholarPubMed
Dingli, D., Pacheco, J. M.. Modeling the architecture and dynamics of hematopoiesis. Wiley Interdisciplinary Reviews : Systems Biology and Medicine, 2 (2010), No. 2, 235244. Google ScholarPubMed
R. C. Dorf, R. H. Bishop. Modern Control Systems (12th Edition). Pearson Educatiýn Inc., New Jersey, 2011.
Dyson, J., Villella-Bressan, R., Webb, G. F.. A singular transport equation modelling a proliferating maturity structured cell population. Canadian Applied Mathematics Quarterly, 4 (1996), No. 1, 6595. Google Scholar
Fortin, P., Mackey, M. C.. Periodic chronic myelogenous leukemia : spectral analysis of blood counts and aetilogical implications. British Journal of Haematology, 104 (1999), No. 2, 336345. CrossRefGoogle Scholar
Foley, C., Mackey, M.C.. Dynamic hematological disease : a review. J. Mathematical Biology, 58 (2009), No. 1-2, 285–322. CrossRefGoogle ScholarPubMed
Grüne, L.. Input-to-state dynamical stability and its Lyapunov function characterization. IEEE Trans. on Automatic Control, 47 (2002), No. 9, 14991504. CrossRefGoogle Scholar
Gu, K.. An improved stability criterion for systems with distributed delays. Int. J. Robust and Nonlinear Control, 13 (2003), No. 9, 819831. CrossRefGoogle Scholar
Gupta, P. B., Chaffer, C. L., Weinberg, R.A.. Cancer stem cells : mirage or reality ? Nature Medicine, 15 (2009), No. 9, 10101012. CrossRefGoogle ScholarPubMed
Haferlach, T.. Molecular genetic pathways as therapeutic targets in acute myeloid leukemia. Hematology, American Society of Hematology Educational Program, (2008), No. 1, 400411. Google ScholarPubMed
A. Halanay. Differential Equations, Stability, Oscillations, Time Lags. (in Romanian), Editura Academiei R.P.R., Bucharest, 1963, English version by Academic Press, 1966.
Haurie, C., Dale, D. C., Mackey, M. C.. Cyclical neutropenia and other periodic hematological diseases : A review of mechanisms and mathematical models. Blood, 92 (1998), No. 8, 26292640. Google ScholarPubMed
Hope, K. J., Jin, L., Dick, J. E.. Human acute myeloid leukemia stem cells. Archives of Medical Research, vol.34 (2003), No. 6, 507514. CrossRefGoogle ScholarPubMed
Huntly, B. J. P., Gilliland, D. G.. Leukemia stem cells and the evolution of cancer-stem-cell research. Nature Reviews : Cancer, 5 (April 2005), 311321. Google ScholarPubMed
King, M. E., Rowe, J.. Recent developments in acute myelogenous leukemia therapy. The Oncologist, 12 (2007), Suppl. 2, 1421. Google ScholarPubMed
Kold-Andersen, L., Mackey, M. C.. Resonance in periodic chemotherapy : A case study of acute myelogenous leukemia. J. Theoretical Biology, 209 (2001), No. 1, 113130. CrossRefGoogle Scholar
Lai, X., Nikolov, S., Wolkenhauer, O., Vera, J.. A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in erythropoiesis. Computational Biology and Chemistry, 33 (2009), No. 4, 312324. CrossRefGoogle ScholarPubMed
Ling, Z., Lin, Z.. Traveling wavefront in a hematopoiesis model with time delay. Applied Mathematics Letters, 23 (2010), No. 4, 426431. CrossRefGoogle Scholar
Mackey, M. C., Glass, L.. Oscillation and chaos in physiological control systems. Science, 197 (1977), No. 4300, 287289. CrossRefGoogle Scholar
Mackey, M. C.. Unified hypothesis for the origin of aplastic anaemia and periodic hematopoiesis. Blood, 51 (1978), No. 5, 941956. Google Scholar
Mackey, M. C., Ou, C., Pujo-Menjouet, L., Wu, J.. Periodic oscillations of blood cell populations in chronic myelogenous leukemia. SIAM J. Math. Anal., 38 (2006), No. 1, 166187. CrossRefGoogle Scholar
J. P. Marie. Private communication. Hôpital St. Antoine, Paris, France, July 2010.
Martinez-Climent, J. A., Fontan, L., Gascoyne, R. D., Siebert, R., Prosper, F.. Lymphoma stem cells : enough evidence to support their existence ? Haematologica, 95 (2010), No. 2, 293302. CrossRefGoogle ScholarPubMed
McKendrick, A. G.. Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc., 44 (1925), 98130, DOI : 10.1017/S0013091500034428. CrossRefGoogle Scholar
W. Michiels, S. Mondie, D. Roose, M. Dambrine. The effect of approximating distributed delay control laws on stability. Advances in time-delay systems, S-I. Niculescu, K. Gu, Eds., Springer-Verlag, LNCSE 38, 2004, 207–222.
Michor, F., Hughes, T. P., Iwasa, Y., Branford, S., Shah, N. P., Sawyers, C. L., Nowak, M.. Dynamics of chronic myeloid leukaemia. Nature, 435 (30 June 2005), 12671270. CrossRefGoogle ScholarPubMed
Morarescu, C-I., Niculescu, S-I., Michiels, W.. Asymptotic stability of some distributed delay systems : an algebraic approach. International Journal of Tomography & Statistics, 7 (2007), No. F07, 128133. Google Scholar
U. Münz, J. M. Rieber, F. Allgöwer. Robust stabilization and control of uncertain distributed delay systems. Topics in Time Delay Systems, J. J. Loiseau et al. Eds., LNCIS 388 (2009), 221–231.
Noble, S. L., Sherer, E., Hannemann, R. E., Ramkrishna, D., Vik, T., Rundell, A. E.. Using adaptive model predictive control to customize maintenance therapy chemotherapeutic dosing for childhood acute lymphoblastic leukemia. Journal of Theoretical Biology, 264 (2010), No. 3, 9901002. CrossRefGoogle ScholarPubMed
Niculescu, S-I., Ionescu, V., Ivanescu, D., Dugard, L., Dion, J-M.. On generalized Popov theory for delay systems. Kybernetica, 36 (2000), No. 1, 220. Google Scholar
Niculescu, S-I., Kim, P. S., Gu, K., Lee, P. P., Levy, D.. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete and Continuous Dynamical Systems Series B, 13, (2010), No. 1, 129156. CrossRefGoogle Scholar
A. V. Oppenheim, A. S. Willsky, H. Nawab. Signals & Systems 2nd ed., Prentice Hall, New Jersey, 1997.
H. Özbay. Introduction to feedback control theory. CRC Press LLC, Boca Raton FL, 2000.
H. Özbay, C. Bonnet, J. Clairambault. Stability analysis of systems with distributed delays and application to hematopoietic cell maturation dynamics. Proc. of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 2008, 2050–2055.
H. Özbay, H. Benjelloun, C. Bonnet, J. Clairambault. Stability conditions for a system modeling cell dynamics in leukemia. Preprints of IFAC Workshop on Time Delay Systems, TDS2010, Prague, Czech Republic, June 2010.
Peixoto, D., Dingli, D., Pacheco, J.M.. Modelling hematopoiesis in health and disease. Mathematical and Computer Modelling, 53 (2011), 7-8, 1546–1557. CrossRefGoogle Scholar
B. Perthame. Transport equations in biology. Frontiers in Mathematics, Birkhäuser Verlag, 2007.
Popov, V. M., Halanay, A.. On stability for nonlinear systems with time delay. (in Russian), Automat. i Telemekhanika, 23 (1962), No. 7, 849851. Google Scholar
Qu, Y., Wei, J., Ruan, S.. Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays. Physica D : Nonlinear Phenomena, 239 (2010), No. 20–22, 20112024. CrossRefGoogle Scholar
V. Răsvan. Absolute stability of time lag control systems. (in Romanian) Editura Academiei, R.S.R., Bucharest, 1975 (Russian version by Nauka, Moscow, 1983).
Răsvan, V.. “Lost” cases in theory of stability for linear time-delay systems. Mathematical Reports, 9 (2007), No. 1, 99110. Google Scholar
Rowe, J.. Why is clinical progress in acute myelogenous leukemia so slow ? Best Practice & Research Clinical Haematology., vol. 21 (2008), No. 1, 13. CrossRefGoogle ScholarPubMed
N. J. Savill, W. Chadwick, S. E. Reece. Quantitative analysis of mechanisms that govern red blood cell age structure and dynamics during anaemia. PLoS Computational Biology, 5 (2009), doi :10.1371/journal.pcbi.1000416
E. D. Sontag. The ISS philosophy as a unifying framework for stability-like behavior. Nonlinear Control in the Year 2000, vol.2, LNCIS 259 (2001), 443-467, DOI : 10.1007/BFb0110320.
Sperr, W. R., Hauswirth, A. W., Florian, S., Öhler, L., Geissler, K., Valent, P.. Human leukaemic stem cells : a novel target of therapy. European Journal of Clinical Investigation, 34, Suppl.2, (August 2004), 3140. CrossRefGoogle Scholar
E. I. Verriest. Stability of systems with distributed delays. Preprints of the IFAC Conference on System, Structure and Control, Nantes, France, July 1995, 294–299.
E. I. Verriest. Linear Systems with Rational Distributed Delay : Reduction and Stability. Proc. of the 1999 European Control Conference, DA-12, Karlsruhe, Germany, September 1999.
M. Vidyasagar. Nonlinear system analysis, 2nd Ed., SIAM Classics in Applied Mathematics, vol. 42, SIAM, Philadelphia 2002.
Ważewska-Czyżewska, M., Lasota, A.. Mathematical problems of the dynamics of a system of red blood cells. (in Polish) Matematyka Stosowana, 6 (1976), 2340. Google Scholar
Wan, A., Wei, J.. Bifurcation analysis in an approachable haematopoietic stem cells model. J. Math. Anal. Appl., 345 (2008), No. 1, 276285. CrossRefGoogle Scholar
Zou, G-M.. Cancer stem cells in leukemia, recent advances. Journal of Cellular Physiology, 213 (2007), No. 2, 440444. CrossRefGoogle ScholarPubMed