Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T20:46:24.095Z Has data issue: false hasContentIssue false

Stability Analysis of a Feedback Model for the Action of theImmune System in Leukemia

Published online by Cambridge University Press:  07 February 2014

S. Balea
Affiliation:
“POLITEHNICA” University of Bucharest Department of Mathematics and Informatics Splaiul Independentei 313 RO-060042 Bucharest, Romania
A. Halanay
Affiliation:
“POLITEHNICA” University of Bucharest Department of Mathematics and Informatics Splaiul Independentei 313 RO-060042 Bucharest, Romania
D. Jardan
Affiliation:
“POLITEHNICA” University of Bucharest Department of Mathematics and Informatics Splaiul Independentei 313 RO-060042 Bucharest, Romania
M. Neamţu*
Affiliation:
“POLITEHNICA” University of Bucharest Department of Mathematics and Informatics Splaiul Independentei 313 RO-060042 Bucharest, Romania West University of Timisoara, Department of Economics and Modelling 300115 Pestalozzi Str. 16, Timisoara, Romania
C. A. Safta
Affiliation:
“POLITEHNICA” University of Bucharest Department of Mathematics and Informatics Splaiul Independentei 313 RO-060042 Bucharest, Romania
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

A mathematical model, coupling the dynamics of short-term stem-like cells and matureleukocytes in leukemia with that of the immune system, is investigated. The model isdescribed by a system of seven delay differential equations with seven delays. Threeequilibrium points E0, E1,E2 are highlighted. The stability and the existence of theHopf bifurcation for the equilibrium points are investigated. In the analysis of themodel, the rate of asymmetric division and the rate of symmetric division are veryimportant.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. K. Abass, A. H. Lichtman, S. Pillai. Cellular and molecular immunolgy. 7th edition, Elsevier (2012).
Abbott, L.H., Michor, F.. Mathematical models of targeted cancer therapy. British Journal of Cancer 95 (2006), 11361141. CrossRefGoogle ScholarPubMed
Adimy, M., Crauste, F.. Delay differential equations and autonomous oscillations in Hematopoietic stem cell dynamics modeling. Math. Model. Nat. Phenom., (2012), 7(6), 122. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Halanay, A., Neamţu, M., Opriş, D.. Stability of limit cycles in a pluripotent stem cell dynamics model. Chaos, Solitons&Fractals (2006), 27(4), 10911107. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Ruan, S.. A mathematical study of the hematopoiesis process with application to chronic myelogenous leukemia. SIAM J. Appl. Math. (2005), 65(4), 13281352. CrossRefGoogle Scholar
Beckman, J., Scheitza, S., Wernet, P., Fischer, J., Giebel, B.. Asymmetric cell division within the human hematopoietic stem and progenitor cell compartment: identification of asymetrically segregating proteins. Blood (2007), No. 12, 109, 54945501.
R. Bellman, K. L. Cooke. Differential-Difference equations. Academic Press New York, (1963).
Beretta, E., Kuang, Y.. Geometric stability switch criteria in delay differential dystems with delay-dependent darameters. SIAM J. Math. Anal. (2002), 33(5), 1144-1165. CrossRefGoogle Scholar
Burger, E.. On stability of certain economic systems. Econometrica (1956), 24, 488493. CrossRefGoogle Scholar
Colijn, C., Mackey, M.C.. A mathematical model of hematopoiesis I-Periodic chronic myelogenous leukemia. J. Theor. Biology (2005), 237, 117132. CrossRefGoogle ScholarPubMed
Cooke, K., Grossman, Z.. Discrete Delay, Distribution delay and stability switches. J. Math. Anal. Appl. (1982), 86, 592627. CrossRefGoogle Scholar
Cooke, K., van den Driessche, P.. On zeros of some transcendental equations. Funkcialaj Ekvacioj (1986), 29, 7790. Google Scholar
L.E. El’sgol’ts, S.B. Norkin. Introduction to the theory of differential equations with deviating arguments. (in Russian). Nauka, Moscow, 1971.
Fridman, A.. Cancer as multifaceted disease. Math. Model. Nat. Phenom (2012), 7, No.1, 328. CrossRefGoogle Scholar
Halanay, A.. Periodic solutions in mathematical models for the treatment of chronic myelogenous leukemia. Math. Model. Nat. Phenom (2012), 7, No.1, 235244. CrossRefGoogle Scholar
J. Hale. Theory of functional differential equations. Springer, New York, 1977.
Kim, P., Lee, P., Levy, D.. Dynamics and potential impact of the immune response to chronic myelogenous leukemia. PLoS Comput.Biol. (2008), 4(6):e1000095. CrossRefGoogle Scholar
P. Kim, P.Lee, D. Levy.A theory of immunodominance and adaptive regulation,Bull. Math. Biol. (2010), DOI 10.1007/s11538-010-9585-5.
Mackey, M.C., Ou, C., Pujo-Menjouet, L., Wu, J.. Periodic oscillations of blood cell population in chronic myelogenous leukemia. SIAM J. Math. Anal. (2006), 38, 166187. CrossRefGoogle Scholar
Marciniak-Czochra, A., Stiehl, T., Wagner, W.. Modeling of replicative senescence in hematopoietic development. Aging (2009), 1(8), 723732. CrossRefGoogle ScholarPubMed
Michor, F., Hughes, T., Iwasa, Y., Branford, S., Shah, N.P., Sawyers, C., Novak, M.. Dynamics of chronic myeloid leukemia. Nature (2005), 435, 12671270. CrossRefGoogle Scholar
Moore, H., Li, N.K.. A mathematical model for chronic myelogenous leukemia (CML) and T-cell interaction. J. Theor. Biol. (2004), 227, 513523. CrossRefGoogle ScholarPubMed
S. I. Niculescu, P. S. Kim, K. Gu, P. Lee, D. Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete and Continuous Dynamical Systems (2010), Series B Volume 13, No. 1, pp. 129–156.
Ozbay, H., Bonnet, C., Benjelloun, H., Clairambault, J.. Stability analysis of cell dynamcis in leukemia. Math. Model. Nat. Phenom. (2012), Volume 7, No. 1, 203234. CrossRefGoogle Scholar
Radulescu, R., Candea, D., Halanay, A.. Stability and bifurcation in a model for the dynamics of stem-like cells in leukemia under treatment. American Institute of Physics Proceedings (2012), 1493, 758763. Google Scholar
Reya, T.. Regulation of hematopoietic stem cell self-Renewal. Recent Progress in Hormone Research (2003), 58, 283295. CrossRefGoogle ScholarPubMed
Stiehl, T., Marciniak-Czochra, A.. Mathematical modeling of leukemogenesis and cancer stem cell dynamics. Math. Model. Nat. Phenom. (2012), Vol. 7, No. 1, 166202. CrossRefGoogle Scholar
Tomasetti, C., Levi, D.. Role of symmetric and asymmetric division of stem cells in developing drug resistance. PNAS (2010), Vol. 17 , No. 39, 1676616771. CrossRefGoogle Scholar
J. Zajac, L. E. Harrington. Immune response to viruses: antibody-mediated immunity. University of Alabama at Birmingham, Birmingham, AL, USA, Elsevier Ltd, 2008.