Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T13:02:36.385Z Has data issue: false hasContentIssue false

Soliton-pair Propagation under Thermal Bath Effect

Published online by Cambridge University Press:  29 February 2012

N. Boutabba
Affiliation:
Department of Physics and Astronomy, Texas A&M University College Station, Texas 77843, USA Université of Carthage, Tunis, Tunisia
H. Eleuch*
Affiliation:
Department of Physics and Astronomy, Texas A&M University College Station, Texas 77843, USA Max Planck Institute for Physics of Complex Systems, 01187 Dresden, Germany Université of Carthage, Tunis, Tunisia
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

We consider two atomic transitions excited by two variable laser fields in a three-level system. We study the soliton-pair propagation out of resonance and under thermal bath effect. We present general analytical implicit expression of the soliton-pair shape. Furthermore, we show that when the coupling to the environment exceeds a critical value, the soliton-pair propagation through three-level atomic system will be prohibited.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. Allen, J. Eberly. Optical Resonance and Two-Level Atoms. Dover, New York, 1987.
Alzetta, G., Gozzini, A., Moi, L., Orriols, G.. Experimental-method for observation of Rf Transitions and Laser beat resonances in oriented Na vapor. Nuova Cimento, 36 (1976), No. 1, 520. CrossRefGoogle Scholar
Baas, A., Karr, J., Eleuch, H., Giacobino, E.. Optical bistability in semiconductor microcavities. Phys. Rev. A, 69 (2004), No. 2, 023809. CrossRefGoogle Scholar
Bishop, A., Krumhansl, J., Trullinger, S.. Solitons in condensed matter : A paradigm. Physica D, 1 (1980), No. 1, 1-44. CrossRefGoogle Scholar
Boller, K., Imamogluand, A., Harris, S.. Observation of electromagnetically induced transparency. Phys. Rev. Lett 66 (1991), No. 20, 25932596. CrossRefGoogle Scholar
Boutabba, N., Hassine, L., Rihani, A., Bouchriha, H.. Analytic photocurrent transient response of an Al/6T/ITO photovoltaic cell using Volterra series analysis. Synthetic Metals, 139 (2003), No. 2, 227231. CrossRefGoogle Scholar
Boutabba, N., Hassine, L., Loussaief, N., Kouki, F., Bouchriha, H.. Volterra series analysis of the photocurrent in an Al/6T/ITO photovoltaic device. Organic Electronics, 4 (2003), No. 1, 18. CrossRefGoogle Scholar
Boutabba, N., Eleuch, H., Bouchriha, H.. Thermal bath effect on soliton propagation in three level atomic system. Synthetic Metals, 159 (2009), No. 13, 12391243. CrossRefGoogle Scholar
Chernodub, M., Hu, Sh., Niemi, A.. Topological solitons and folded proteins. Phys. Rev. E, 82 (2010), No. 1, 011916. CrossRefGoogle ScholarPubMed
Lechner, C., Husa, S., Aichelburg, C.. SU(2) cosmological solitons. Phys. Rev. D, 62 (2000), No. 4, 044047. CrossRefGoogle Scholar
Dridi, G., Guerin, S., Hakobyan, V., Jauslin, H, Eleuch, H. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses. Phys. Rev A, 80 (2009), No. 4, 043408. CrossRefGoogle Scholar
Eberly, J.. Transmission of dressed field in 3-level media. Quantum Semiclass. Opt. 7 (1995), No. 3, 373384. CrossRefGoogle Scholar
Eleuch, H., Rachid, N.. Autocorrelation function of microcavity-emitting field in the non-linear regime. Eur. Phys. J. D., 57 (2010), No. 2, 259264. CrossRefGoogle Scholar
Eleuch, H.. Autocorrelation function of microcavity-emitting field in the linear regime. Eur. Phys. J. D., 48 (2008), No. 1, 139143. CrossRefGoogle Scholar
Eleuch, H.. Noise spectra of microcavity-emitting field in the linear regime. Eur. Phys. J. D., 49 (2008), No. 3, 391-395. CrossRefGoogle Scholar
Eleuch, H.. Quantum trajectories and autocorrelation function in semiconductor microcavity. Applied Mathematics & Information Science 3 (2009), No. 3, 185196. Google Scholar
Eleuch, H., Ben Nessib, N., Bennaceur, R.. Quantum Model of emission in weakly non ideal plasma. Eur. Phys. J. D, 29 (2004), No. 3, 391395. CrossRefGoogle Scholar
Eleuch, H., Bennaceur, R.. Non linear dissipations and the quantum noise of light in semiconductor microcavities. J. Opt. B : Quantum and Semiclassical Optics, 6 (2004), No. 4, 189195. CrossRefGoogle Scholar
Eleuch, H.. Photon statistics of light in semiconductor microcavities. J. Phys. B, 41 (2008), No. 5, 055502. CrossRefGoogle Scholar
Eleuch, H., Elser, D., Bennaceur, R.. Soliton propagation in an absorbing three level atomic system. Laser Phys. Lett., 1 (2004), No. 8, 391396. CrossRefGoogle Scholar
Eleuch, H., Bennaceur, R.. An optical Soliton pair among absorbing three-level atoms. J. Opt. A : Pure Appl.Opt., 5 (2003), No. 5, 528533. CrossRefGoogle Scholar
Giacobino, E., Karrr, J., Messin, G., Eleuch, H.. Quantum optical effects in semiconductor microcavities. C. R. Physique, 3 (2002), No. 1, 4152. CrossRefGoogle Scholar
Gray, H., Whitley, R., Stroud, C.. Coherent trapping of atomic populations. Optics Letters, 3 (1978), No. 6, 218220. CrossRefGoogle ScholarPubMed
Y. Guo, C. Kao, E. Li, K. Chiang. Nonlinear Photonics, Series in Photonics, Springer, New York, 2002.
Jabri, H., Eleuch, H., Djerad, T.. Lifetimes of atomic Rydberg states by autocorrelation function. Laser Phys. Lett., 2 (2005), No. 5, 253257. CrossRefGoogle Scholar
Jha, P., Eleuch, H., Rostovtsev, Y.. Coherent control of atomic excitation using off-resonant strong few-cycle pulses. Phys. Rev. A, 82 (2010), No. 4, 045805. CrossRefGoogle Scholar
Korchemsky, G., Krichever, I.. Solitons in high-energy QCD. Nucl. Phys. B, 505 (1997), No. 1–2, 387-414. CrossRefGoogle Scholar
L. Mandel, E. Wolf. Optical Coherence and Quantum Optics, Cambridge University Press, New York, 1995.
Marklund, M., Tskhakaya, D., Shukla, P.. Quantum electrodynamical shocks and solitons in astrophysical plasmas. Europhys. Lett., 72 (2005), No. 6, 950-954. CrossRefGoogle Scholar
Messin, G., Karr, J., Eleuch, H., Courty, J., Giacobino, E.. Squeezed states and quantum noise of light in semiconductor microcavities. J. Phys. : Condens. Matter, 11 (1999), No. 31, 60696078. Google Scholar
Park, Q. and Shin, H.. Systematic construction of multicomponent optical solitons. Phys. Rev. E, 61 (2000), No. 3, 3093. CrossRefGoogle Scholar
Rostovstev, Y., Eleuch, H., Svidzinsky, A., Li, H., Sautenkov, V., Scully, M.. Generation of maximal coherence in a 2-level system via breaking of adiabaticity. Phys. Rev. A., 79 (2009), No. 6, 063833. Google Scholar
Sete, E. and Eleuch, H.. Interaction of a quantum well with squeezed light : Quantum statistical properties. Phys. Rev. A, 82 (2010), No. 4, 043810. CrossRefGoogle Scholar
Wesner, M., Herden, C., Pankrath, R., Kip, D., Moretti, P.. Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides. Phys. Rev. E, 64 (2001), No. 3, 036613.CrossRefGoogle ScholarPubMed