Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T19:35:20.431Z Has data issue: false hasContentIssue false

Singular Perturbations For Heart ImageSegmentation Tracking

Published online by Cambridge University Press:  27 January 2009

J. Pousin*
Affiliation:
Université de Lyon, Université Lyon 1 ; INSA de Lyon, F-69100 ; École Centrale de Lyon ; CNRS, UMR5208, Institut Camille Jordan, 20 Av. E. Einstein F-69100 Villeurbanne Cedex, France
Get access

Abstract

In this note we give a result of convergence when time goes to infinity for aquasi static linear elastic model, the elastic tensor of which vanishes atinfinity. This method is applied to segmentation of medical images, and improvesthe 'elastic deformable template' model introduced previously.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

H. Brézis. Analyse fonctionnelle. Masson, Paris 1985.
C, Xu, J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7 1998, 359-369.
P.G. Ciarlet. Mathematical elasticity. North-Holland 1993.
J. Cousty, L. Najman, M. Couprie, S. Clément-Guinaudeau, T. Goissen, J. Garot. Automated, accurate and fast segmentation of 4D cardiac MR images. Functional Imaging and Modeling of the Heart (FIMH), LNCS, Springer, (2007), No. 4466, 474-483.
Faugeras, B., Pousin, J.. Variational asymptotic derivation of an elastic model arising from the problem of 3D automatic segmentation of cardiac images. Analysis and Applications, 2 (2004), No. 4, 133. CrossRef
Krasucki, F., Lenci, S.. Yield design of bonded joints. Eur. J. Mech. A Solids, 19 (2000), No. 4, 649667. CrossRef
J. Necas. Les méthodes directes en théorie des équations elliptiques. Masson, Paris, 1967.
O.A. Oleinik, A.S. Shamaev, G.A. Yosifian. Mathematical problems in elasticity and homogenization. Studies in Mathematics and its applications, Noth-Holland 1992.
Q.C. Pham, F. Vincent, P. Clarysse, P. Croisille, I.E. Magnin. A FEM-based deformable model for the 3D segmentation and tracking of the heart in cardiac MRI., Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, ISPA (2001), 250-254.
M. Picq J. Pousin, Y. Rouchdy, A linear 3D elastic segmentation model for vector fields. Application to the heart segmentation in MRI. Journal Of Mathematical Imaging and Vision, 27 (2007), No. 3, 241–255.
P. Pebay, T. Baker, J. Pousin. Dynamic meshing for finite element based segmentation of cardiac imagery. Fifth World Congress on Computational Mechanics, (2002).
Rouchdy, Y., Pousin, J. , Schaerer, J., Clarysse, P.. A nonlinear elastic deformable template for soft structure segmentation. Application to heart segmentation in MRI. J. Inverse Problems, 23 (2007), No. 3, 10171035. CrossRef
L. Tartar. Topics in nonlinear analysis. Publications Mathématiques d'Orsay, 1978.
J. Simon. Compact Sets in the Space L p (O, T; B). Ann. Math. Pura Appl., (IV) Vol. CXLVI (1987), 65-96.