Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T09:15:49.091Z Has data issue: false hasContentIssue false

Seasonality, Climate Cycles and Body Size Evolution

Published online by Cambridge University Press:  27 November 2009

T. A. Troost*
Affiliation:
Deltares, Department of Ecosystem Analysis and Assessment, Rotterdamseweg 185, 2600 MH Delft, The Netherlands
J. A. van Dam
Affiliation:
Faculty of Earth and Life Sciences, Dept. of Paleoclimatology and Geomorphology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands Institut Catala de Paleontologia (ICP), Campus de la UAB, Modul ICP, E-08193 Cerdanyola del Valles, Spain
B. W. Kooi
Affiliation:
Faculty of Earth and Life Sciences, Dept. of Theoretical Biology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
E. Tuenter
Affiliation:
Institute for Marine and Atmospheric research Utrecht (IMAU), Princetonplein 5, 3584 CC Utrecht, The Netherlands
Get access

Abstract

The seasonality hypothesis states that climates characterized by large annual cycles select for large body sizes. In order to study the effects of seasonality on the evolution of body size, we use a model that is based on physiological rules and first principles. At the ecological time scale, our model results show that both larger productivity and seasonality may lead to larger body sizes. Our model is the first dynamic and process-based model to support the seasonality hypothesis and hence demonstrates the importance of basing models on physiological processes. We focus not only on variability at the ecological time scale, but also on the temporal variations in seasonality existing at geological time scales. A particularly strong forcing of seasonality exists on the scale of 20,000-400,000 years, the scale of Milankovitch cycles. Therefore, we simulated the evolutionary response of body size to a Milankovitch-type of forcing of climate and food density. Results illustrate that for a given level of investment in reserves body size may track climatic cycles, and that below a certain seasonality threshold the body size will decrease rapidly, leading to extinction.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

K. G. Ashton. Body size variation among mainland populations of the western rattlesnake (Crotalus viridis). Evolution, (2001), 55(12):2523–2533.
Boyce, M. S.. Climatic variability and body size variation in the muskrats (Ondatra zibethicus) of North America. Oecologia, 36 (1978), 119. CrossRef
Boyce, M. S.. Seasonality and patterns of natural selection for life histories. The American Naturalist, 114 (1979), No. 4, 569583. CrossRef
Chown, S. L., Klok, C. J.. Altitudinal body size clines: latitudinal effects associated with changing seasonality. Ecography, 26 (2003), No. 4, 445455. CrossRef
Cohen, D., Parnas, H.. An optimal policy for the metabolism of storage materials in unicellular algae. J. theor. Biol., 56 (1976), 118. CrossRef
Dickman, C. R., Mahon, P. S., Masters, P., Gibson, D. F. Long-term dynamics of rodent populations in arid australia: the influence of rainfall. Wildlife Research, 26 (1999), No. 4, 389403. CrossRef
Dieckmann, U.. Can adaptive dynamics invade? Trends in Ecology and Evolution, 12 (1997), 128131. CrossRef
Dieckmann, U., Law, R.. The mathematical theory of coevolution: a derivation from stochastic processes. J. Math. Biol., 34 (1996), 579612. CrossRef
Dunsbrack, R. L., Ramsay, M. A.. The allometry of mammalian adaptations to seasonal environments - a critique of the fasting endurance hypothesis. OIKOS, 66 (1993), No. 2, 336342. CrossRef
Ferguson, S. H.. The effects of productivity and seasonality on life history: comparing age at maturity among moose (Alces alces) populations. Global Ecology and Biogeography, 11 (2002), No. 4, 303312. CrossRef
N. R. French, D. M. Stoddart, B. Bobek. Patterns of demography in small mammal populations. In F. B. Golley, K. Petrusewicz, and L. Ryszkowski, editors, Small mammals: their productivity and population dynamics, pages 73–102. Cambridge University Press, Cambridge, 1975.
Geritz, S. A. H., Kisdi, É., Meszéna, G., Metz, J. A. J.. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology, 12 (1998), 3557. CrossRef
Geritz, S. A. H., Metz, J. A. J., Kisdi, É., Meszéna, G.. Dynamics of adaptation and evolutionary branching. Physical Review Letters, 78 (1997), 20242027. CrossRef
Geritz, S. A. H., van der Meijden, E., Metz, J. A. J.. Evolutionary dynamics of seed size and seedling competitive ability. Theoretical Population Biology, 55 (1999), 324343. CrossRef
Hays, J. D., Imbrie, J., Shackleton, N. J.. Variations in the earth's orbit: Pacemaker of the ice ages. Science, 194 (1976), 11211132. CrossRef
Hilgen, F. J., Krijgsman, W., Langereis, C. G., Lourens L. J., Santarelli A., W. J. Zachariasse. Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett., 136 (1995), No. 3, 496510. CrossRef
K. L. Kirk. Life-history responses to variable environments: starvation and reproduction in planctonic rotifers. Ecology, (1997), 78(2):434–441.
B. W. Kooi, S. A. L. M. Kooijman. Population dynamics of rotifers in chemostats. Nonlinear Analysis, Theory, Methods & Applications, 30 (1997), No. 3, 1687–1698.
Kooi, B. W., Kooijman, S. A. L. M.. Discrete event versus continuous approach to reproduction in structured population dynamics. Theoretical Population Biology, 56 (1999), No. 1, 91105. CrossRef
Kooi, B. W., Troost, T. A.. Advantages of storage in a fluctuating environment. Theoretical Population Biology, 70 (2006), No. 4, 527541. CrossRef
S. A. L. M. Kooijman. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, 2000.
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., Levrard, B.. A long-term numerical solution for the insolation quantities of the earth. Astronomy & Astrophysics, 428 (2004), 261285. CrossRef
Lehman, S. M., Mayor, M., Wright, P. C.. Ecogeographic size variations in sifakas: a test of the resource seasonality and resource quality hypotheses. American Journal of Physical Anthropology, 126 (2005), No. 3, 318328. CrossRef
Lieth, H.. Primary production: terrestrial ecosystems. Human Ecology, 1 (1973), 303332. CrossRef
Lima, M., Keymer, J. E., Jaksic, F. M.. El Niño-Southern oscillation-driven rainfall variability and delayed density dependence cause rodent outbreaks in Western South America: linking demography and population dynamics. The American Naturalist, 153 (1999), No. 15, 476491.
Lindsey, C. C.. Body sizes of poikilotherm vertebrates at different latitudes. Evolution, 20 (1966), 456465. CrossRef
Lindstedt, S. L., Boyce, M. S.. Seasonality, fasting endurance, and body size in mammals. The American Naturalist, 125 (1985), 873878. CrossRef
Madson, T., Shine, R.. Rainfall and rats: climatically-driven dynamics of a tropical rodent population. Austral Ecology, 24 (1999), No. 1, 8089. CrossRef
Meiri, S., Dayan, T., Simberloff, D.. Biogeographical patterns in the Western Palearctic: the fasting-endurance hypothesis and the status of Murphy's rule. Journal of Biogeography, 32 (2005), 369375. CrossRef
J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs, J. S. van Heerwaarden. Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: S. J. van Strien, S. M. Verduyn Lunel, editors, Stochastic and spatial structures of dynamical systems, pages 183–231. North-Holland, Amsterdam, 1996.
Metz, J. A. J., Geritz, S. A. H., Nisbet, R. M.. How should we define 'fitness' for general ecological scenarios? Trends in Ecology & Evolution, 7 (1992), 198202. CrossRef
Milankovitch. Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy, Spec. Publ., 133 (1941), 1–633.
Muller, E. B., Nisbet, R. M.. Survival and production in variable resource environments. Bulletin of Mathematical Biology, 62 (2000), 11631189. CrossRef
Olsen, P. E., Kent, D. V.. Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behavior of the planets. Phil. Trans. R. Soc. Lond. (A), 357 (1999), 17611784. CrossRef
Parnas, H., Cohen, D.. The optimal strategy for the metabolism of reserve materials in micro-organisms. J. theor. Biol., 56 (1976), No. 1, 1955. CrossRef
R. H. Peters. The Ecological Implications of Body Size. Cambridge University Press, New York, 1983.
Predavec, M.. Population-dynamics and environmental changes during natural irruptions of Australian desert rodents. Wildlife Research, 21 (1994), No. 5, 569582. CrossRef
Shertzer, K. W., Ellner, S. P.. Energy storage and the evolution of population dynamics. J. theor. Biol., 215 (2002), 183200. CrossRef
Smith, F. A., Betancourt, J. L., Brown, J. H.. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science, 270 (1995), 20122014. CrossRef
Stenseth, N. C., Leirs, H., Skonhoft, A., Davis, S. A., Pech, R. P., Andreassen, H. P., Singleton, G. R., Lima, M., Machang'u, R. S., Makundi, R. H., Zhang, Z. B., Brown, P. R., Shi, D. Z., Wan, X. R.. Mice, rats and people: the bio-economics of agricultural rodent pests. Frontiers in Ecology and the Environment, 1 (2003), No. 7, 367375. CrossRef
Troost, T. A., Kooi, B. W., Dieckmann, U.. Joint evolution of predator body size and prey-size preference. Evolutionary Ecology, 22 (2008), 771799. CrossRef
T. A. Troost, B. W. Kooi, S. A. L. M. Kooijman. Bifurcation analysis of ecological and evolutionary processes in ecosystems. Ecological Modelling, 204 (2007), No. 1/2, 253–268.
van Leeuwen, I. M. M., Kelpin, F. D. L., Kooijman, S. A. L. M.. A mathematical model that accounts for the effects of caloric restriction on body weight and longevity. Biogerontology, 3 (2002), No. 6, 373381. CrossRef
Wigginton, J. D., Dobson, F. S.. Environmental influences on geographic variation in body size of western bobcats. Canadian Journal of Zoology, 77 (1999), No. 5, 802813. CrossRef