No CrossRef data available.
Article contents
Preface
Published online by Cambridge University Press: 20 June 2014
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Introduction
- Information
- Mathematical Modelling of Natural Phenomena , Volume 9 , Issue 4: Optimal control , 2014 , pp. 1 - 5
- Copyright
- © EDP Sciences, 2014
References
Aniţa, S.. Zero-stabilization for some diffusive models with state constraints. Math. Model. Nat. Phenom., 9 (2014), no. 3, 6–19. CrossRefGoogle Scholar
Belyakov, A. O., Veliov, V. M.. Constant versus periodic fishing: age structured optimal control approach. Math. Model. Nat. Phenom., 9 (2014), no. 3, 20–37. CrossRefGoogle Scholar
Boucekkine, R., Martinez, B., Ruiz-Tamarit, J.R.. Optimal sustainable policies under pollution ceiling: the demographic side. Math. Model. Nat. Phenom., 9 (2014), no. 3, 38–64. CrossRefGoogle Scholar
Bugariu, I.F., Micu, S.. A numerical method with singular perturbation to approximate the controls of the heat equation. Math. Model. Nat. Phenom., 9 (2014), no. 3, 65–87. CrossRefGoogle Scholar
Dimitriu, G., Lorenzi, T., Stefanescu, R.. Evolutionary dynamics and optimal control of chemotherapy in cancer cell populations under immune selection pressure. Math. Model. Nat. Phenom., 9 (2014), no. 3, 88–104. CrossRefGoogle Scholar
Grigorieva, E.V., Khailov, E.N.. Optimal vaccination, treatment, and preventive campaigns in regard to the SIR epidemic model. Math. Model. Nat. Phenom., 9 (2014), no. 3, 105–121. CrossRefGoogle Scholar
Kato, N.. Linear size-structured population models with spacial diffusion and optimal harvesting problems. Math. Model. Nat. Phenom., 9 (2014), no. 3, 122–130. CrossRefGoogle Scholar
Ledzewicz, U., Schättler, H.. A review of optimal chemotherapy protocols: from MTD towards metronomic therapy. Math. Model. Nat. Phenom., 9 (2014), no. 3, 131–152. CrossRefGoogle Scholar
Marinoschi, G.. Control approach to an ill-posed variational inequality. Math. Model. Nat. Phenom., 9 (2014), no. 3, 153–170. CrossRefGoogle Scholar
Numfor, E., Bhattacharya, S., Lenhart, S., Martcheva, M.. Optimal control in coupled within-host and between-host models. Math. Model. Nat. Phenom., 9 (2014), no. 3, 171–203. CrossRefGoogle Scholar
Poleszczuk, J., Piotrowska, M. J., Forys, U.. Optimal protocols for the anti-VEGF tumor treatment. Math. Model. Nat. Phenom., 9 (2014), no. 3, 204–215. CrossRefGoogle Scholar
Swierniak, A., Klamka, J.. Local controllability of models of combined anticancer therapy with delays in control. Math. Model. Nat. Phenom., 9 (2014), no. 3, 216–226. CrossRefGoogle Scholar
Yatsenko, Y., Hritonenko, N., Bréchet, T.. Modeling of environmental adaptation versus pollution mitigation. Math. Model. Nat. Phenom., 9 (2014), no. 3, 227–237. CrossRefGoogle Scholar