No CrossRef data available.
Article contents
Preface
Published online by Cambridge University Press: 03 October 2014
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2014
References
Panteleev, M.A., Sveshnikova, A.N., Belyaev, A.V., Nechipurenko, D.Y., Gudich, I., Obydenny, S.I., Dovlatova, N., Fox, S.C., Holmuhamedov, E.L.. Systems biology and systems pharmacology of thrombosis. Math. Model. Nat. Phenom., 9 (2014), no. 6, 4–16. CrossRefGoogle Scholar
Naidu, P.P., Anand, M.. Importance of VIIIa inactivation in a mathematical model for the formation, growth, and lysis of clots. Math. Model. Nat. Phenom., 9 (2014), no. 6, 17–33. CrossRefGoogle Scholar
Sequeira, A., Bodnar, T.. Blood coagulation simulations using a viscoelastic model. Math. Model. Nat. Phenom., 9 (2014), no. 6, 34–45. CrossRefGoogle Scholar
Boujena, S., Kafi, O., El Khatib, N.. A 2D mathematical model of blood flow and its interactions in an atherosclerotic artery. Math. Model. Nat. Phenom., 9 (2014), no. 6, 46–68. CrossRefGoogle Scholar
Bessonov, N., Babushkina, E., Golovashchenko, S.F., Tosenberger, A., Ataullakhanov, F., Panteleev, M., Tokarev, A., Volpert, V.. Numerical modelling of cell distribution in blood flow. Math. Model. Nat. Phenom., 9 (2014), no. 6, 69–84. CrossRefGoogle Scholar
Gamilov, T., Ivanov, Yu., Kopylov, P., Simakov, S., Vassilevski, Yu.. Patient specific haemodynamic modeling after occlusion treatment in leg. Math. Model. Nat. Phenom., 9 (2014), no. 6, 85–97. CrossRefGoogle Scholar
Tiago, J., Gambaruto, A., Sequeira, A.. Patient-specific blood flow simulations: setting Dirichlet boundary conditions for minimal error with respect to measured data. Math. Model. Nat. Phenom., 9 (2014), no. 6, 98–116. CrossRefGoogle Scholar
Bodnár, T., Pires, M., Janela, J.. Blood flow simulation using traceless variant of Johnson-Segalman viscoelastic model. Math. Model. Nat. Phenom., 9 (2014), no. 6, 117–141. CrossRefGoogle Scholar