Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T18:01:39.605Z Has data issue: false hasContentIssue false

Periodic Solutions in a Mathematical Model for the Treatment ofChronic Myelogenous Leukemia

Published online by Cambridge University Press:  25 January 2012

A. Halanay*
Affiliation:
Department of Mathematics I, Politehnica University of Bucharest, 060042 Bucharest, Romania
*
Get access

Abstract

Existence and stability of periodic solutions are studied for a system of delaydifferential equations with two delays, with periodic coefficients. It models theevolution of hematopoietic stem cells and mature neutrophil cells in chronic myelogenousleukemia under a periodic treatment that acts only on mature cells. Existence of a guidingfunction leads to the proof of the existence of a strictly positive periodic solution by atheorem of Krasnoselskii. The stability of this solution is analysed.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, L.H., Michor, F.. Mathematical models of targeted cancer therapy. British Journal of Cancer 95 (2006), 11361141. CrossRefGoogle ScholarPubMed
Adimy, M., Crauste, F., Halanay, A., Neamţu, M., Opriş, D.. Stability of Limit Cycles in a Pluripotent Stem Cell Dynamics Model. Chaos, Solitons&Fractals, 27(4) (2006), 10911107. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Ruan, S.. A mathematical study of the hematopoiesis process with application to chronic myelogenous leukemia. SIAM J. Appl. Math. 65(4) (2005), 13281352. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Ruan, S.. Periodic oscillations in leukopoiesis models with two delays. Journal of Theoretical Biology 242 (2006), 288-299. CrossRefGoogle ScholarPubMed
Bernard, S., Belair, J., Mackey, M.C.. Oscillations in cyclical neutropenia : new evidence based on mathematical modelling. J. Theor. Biology 223 (2003), 283298. CrossRefGoogle Scholar
Clarkson, B., Strife, A., Wisniewski, D., Lambek, U., Liu, C.. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 17 (2003), 12111262. CrossRefGoogle ScholarPubMed
Colijn, C., Mackey, M.C.. A mathematical model of hematopoiesis I-Periodic chronic myelogenous leukemia. J. Theor. Biology 237 (2005), 117132. CrossRefGoogle ScholarPubMed
Aristide Halanay, Differential Equations : stability, oscilations, time lags. Academic Press, 1966.
A. Halanay. Periodic Solutions in Mathematical Models for Hematological Diseases under Treatment. IEEE Proceedings of the 8-th IFAC Workshop on Time-Delay Systems, Sept. 1-3, Sinaia, Romania, 2009.
Halanay, A.. Stability analysis for a mathematical model of chemotherapy action in hematological diseases. Bull. Sci. Soc. Roumaine Sci. Math. 53 (101) (2010), no. 1, 3-10. Google Scholar
A. Halanay. Treatment induced periodic solutions in some mathematical models of tumoral cell dynamics. Mathematical Reports !2(62) (2010), no. 4, in press.
J. Hale. Theory of Functional Differential Equations. Springer, New York, 1977.
V. Kolmanovskii, A. Myshkis. Applied Theory of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht, 1992.
M.A. Krasnoselskii. Shift operator on orbits of differential equations. Nauka, Moskow, 1966 (in Russian).
Mackey, M.C., A unified hypothesis of the origin of aplastic anemia and periodic hematopoiesis, Blood 51 (1978), 941956. Google Scholar
Mackey, M.C., Ou, C., Pujo-Menjouet, L., Wu, J.. Periodic oscillations of blood cell population in chronic myelogenous leukemia. SIAM J. Math. Anal. 38 (2006), 166187. CrossRefGoogle Scholar
Michor, F., Hughes, T., Iwasa, Y., Branford, S., Shah, N.P., Sawyers, C., Novak, M.. Dynamics of chronic myeloid leukemia. Nature 435 (2005), 12671270. CrossRefGoogle Scholar
Moore, H., Li, N.K.. A mathematical model for chronic myelogenous leukemia (CML) and T-cell interaction. J. Theor. Biol. 227 (2004), 513523. CrossRefGoogle Scholar
Pujo-Menjouet, L., Mackey, C.. Contribution to the study of periodic chronic myelogenous leukemia. Comptes Rendus Biol, 327 (2004), 235244. CrossRefGoogle ScholarPubMed
Sawyers, C.. Chronic Myeloid Leukemia. N. Engl. J. Med. 340 (2000), 13301340. CrossRefGoogle ScholarPubMed