Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T18:32:28.810Z Has data issue: false hasContentIssue false

Oscillations and DNA Repair in a Spatio-Temporal Model of the p53 Signalling Pathway

Published online by Cambridge University Press:  28 May 2014

Get access

Abstract

In mammalian cells, the p53 pathway regulates the response to a variety of stresses, including oncogene activation, heat and cold shock, and DNA damage. Here we explore a mathematical model of this pathway, composed of a system of partial differential equations. In our model, the p53 pathway is activated by a DNA-compromising event of short duration. As is typical for mathematical models of the p53 pathway, our model contains a negative feedback loop representing interactions between the p53 and Mdm2 proteins. A novel feature of our model is that we combine a spatio-temporal approach with the appearance and repair of DNA damage. We investigate the behaviour of our model through numerical simulations. By ignoring the possibility of DNA repair, we first explore the scenario in which the cell has a very inefficient DNA repair mechanism. We find that spatio-temporal oscillations in p53 and Mdm2 may occur, consistent with experimental data. We then allow p53 to be directly involved in repairing DNA damage, since experimental evidence suggests this can happen. We find that oscillations in p53 and Mdm2 can still occur, but their amplitude damps down quickly as the DNA damage is repaired. Finally, we find that a minor change to the location of the DNA damage can notably change the spatial distribution of p53 within the nucleus. We discuss the biological implications of our results.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apte, S.S., Mattei, M.G., Olsen, B.R.. Mapping of the human BAX gene to chromosome 19q13.3-q13.4 and isolation of a novel alternatively spliced transcript, BAX delta. Genomics, 26 (1995), 592-594. CrossRefGoogle ScholarPubMed
Bakkenist, C.J., Kastan, M.B.. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421 (2003), 499-506. CrossRefGoogle ScholarPubMed
Batchelor, E., Mock, C.S., Bhan, I., Loewer, A., Lahav, G.. Recurrent initiation: A mechanism for triggering p53 pulses in response to DNA damage. Molecular Cell, 30 (2008), 277-289. CrossRefGoogle ScholarPubMed
Batchelor, E., Loewer, A., Lahav, G.. The ups and downs of p53: understanding protein dynamics in single cells. Nature Reviews Cancer, 9 (2009), 371-377. CrossRefGoogle ScholarPubMed
Blattner, C., Hay, T., Meek, D.W., Lane, D.P.. Hypophosphorylation of Mdm2 augments p53 stability. Molecular and Cellular Biology, 22 (2002), 6170-6182. CrossRefGoogle ScholarPubMed
Bode, A.M., Dong, Z.. Post-translational modifications of p53 in tumorigenesis. Nat. Rev. Cancer, 4 (2004), 793-805. CrossRefGoogle ScholarPubMed
Cangiani, A., Natalini, R.. A spatial model of cellular molecular trafficking including active transport along microtubules. J. Theor. Biol., 267 (2010), 614-625. CrossRefGoogle ScholarPubMed
Carracedo, A., Alimonti, A., Pandolfi, P.P.. PTEN level in tumor suppression: how much is too little? Cancer Research, 71 (2011), 629-633. CrossRefGoogle ScholarPubMed
Chung, C.H., Ely, K., McGavran, L., Varella-Garcia, M., Parker, J., Parker, N., Jarrett, C., Carter, J., Murphy, B.A., Netterville, J., Burkey, B.B., Sinard, R., Cmelak, A., Levy, S., Yarbrough, W.G., Slebos, R.J., Hirsch, F.R.. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J. Clin. Oncol., 24 (2006), 4170-4176. CrossRefGoogle ScholarPubMed
Ciliberto, A., Novak, B., Tyson, J.. Steady states and oscillations in the p53/Mdm2 network. Cell Cycle, 4:3 (2005), 488-493. CrossRefGoogle ScholarPubMed
Coupland, S.E., Bechrakis, N., Schuler, A., Anagnostopoulos, I., Hummel, M., Bornfeld, N., Stein, H.. Expression patterns of cyclin D1 and related proteins regulating G1-S phase transition in uveal melanoma and retinoblastoma. Br. J. Ophthalmol., 82 (1998), 961-970. CrossRefGoogle ScholarPubMed
Dimitrio, L., Clairambault, J., Natalini, R.. A spatial physiological model for p53 intracellular dynamics. J. Theor. Biol., 316 (2012), 9-24. CrossRefGoogle Scholar
Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav, G., Alon, U.. Oscillations and variability in the p53 system. Mol. Sys. Biol., 2 (2006), 0033. Google Scholar
Giannakakou, P., Sackett, D.L., Ward, Y., Webster, K.R., Blagosklonny, M.V., Fojo, T.. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat. Cell Biol., 2 (2000), 709-717. CrossRefGoogle Scholar
Hikisz, P., Kilianska, Z.M.. Puma, a critical mediator of cell death - one decade on from its discovery. Cell. Mol. Biol. Lett., 17 (2012), 646-669. CrossRefGoogle Scholar
Khanna, K.K., Lavin, M.F., Jackson, S.P., Mulhern, T.D.. ATM, a central controller of cellular responses to DNA damage. Cell Death Diff., 8 (2001), 1052-1065. CrossRefGoogle ScholarPubMed
Lahav, G., Rosenfield, N., Sigal, A., Geva-Zatorsky, N., Levine, A.J., Elowitz, M.B., Alon, U.. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Gen., 36 (2004), 147-150. CrossRefGoogle ScholarPubMed
Loewer, A., Batchelor, E., Gaglia, G., Lahav, G.. Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells. Cell, 142 (2010), 89-100. CrossRefGoogle ScholarPubMed
Ma, L., Wagner, J., Rice, J.J., Hu, W., Levine, A.J., Stolovitzky, G.A.. A plausible model for the digital response of p53 to DNA damage. Proc. Natl. Acad. Sci. USA, 102 (2005), 14266-14271. CrossRefGoogle ScholarPubMed
Manfredi, J.J.. The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes & Development, 24 (2010), 1580-1589. CrossRefGoogle Scholar
Marine, J.C.. p53 stabilization: the importance of nuclear import. Cell Death Diff., 17 (2010), 191-192. CrossRefGoogle ScholarPubMed
Mayo, L.D., Donner, D.B.. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl. Acad. Sci. USA, 98 (2001), 11598-11603. CrossRefGoogle ScholarPubMed
Mihalas, G.I., Neamtu, M., Opris, D., Horhat, R.F.. A dynamic P53-MDM2 model with time delay. Chaos, Solitons and Fractals, 30 (2006), 936-945. CrossRefGoogle Scholar
Monk, N.. Oscillatory expression of Hes1, p53, and NF-кB driven by transcriptional time delays. Curr. Biol., 13 (2003), 1409-1413. CrossRefGoogle Scholar
C.C. Morton. Cancer sentry flashes two-tiered warning, http://hms.harvard.edu/news/cancer-sentry-flashes-two-tiered-warning-9-3-10, 2010.
Offer, H., Milyavsky, M., Erez, N., Matas, D., Zurer, I., Harris, C.C., Rotter, V.. Structural and functional involvement of p53 in BER in vitro and in vivo. Oncogene, 20 (2001), 581-589. CrossRefGoogle Scholar
Ogawara, Y., Kishishita, S., Obata, T., Isazawa, Y., Suzuki, T., Tanaka, K., Masuyama, N., Gotoh, Y.. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J. Biol. Chem., 277 (2002), 21843-21850. CrossRefGoogle ScholarPubMed
Ouattara, D.A., Abou-Jaoude, W., Kaufman, M.. From structure to dynamics: Frequency tuning in the p53-Mdm2 network. II Differential and stochastic approaches. J. Theor. Biol., 264 (2010), 1177-1189. CrossRefGoogle ScholarPubMed
Proctor, C.J., Gray, D.A.. Explaining oscillations and variability in the p53-Mdm2 system. BMC Systems Biology, 2 (2008), 1-20. CrossRefGoogle ScholarPubMed
Pu, T., Zhang, X.P., Liu, F., Wang, W.. Coordination of the nuclear and cytoplasmic activities of p53 in response to DNA damage. Biophysical Journal, 99 (2010), 1696-1705. CrossRefGoogle ScholarPubMed
Puszynski, K., Hat, B., Lipniacki, T.. Oscillations and bistability in the stochastic model of p53 regulation. J. Theor. Biol., 254 (2008), 452-465. CrossRefGoogle ScholarPubMed
Puszynski, K., Bertolusso, R., Lipniacki, T.. Crosstalk between p53 and NF-кB systems: pro- and anti-apoptotic functions of NF-кB. IET Sys. Biol., 3 (2009), 356-367. CrossRefGoogle Scholar
Ragazzini, P., Gamberi, G., Benassi, M.S., Orlando, C., Sestini, R., Ferrari, C., Molendini, L., Sollazzo, M.R., Merli, M., Magagnoli, G., Bertoni, F., Bohling, T., Pazzagli, M., Picci, P.. Analysis of SAS gene and CDK4 and MDM2 proteins in low-grade osteosarcoma. Cancer Detection and Prevention, 23 (1999), 129-136. CrossRefGoogle ScholarPubMed
Schrider, D.R., Hahn, M.W.. Gene copy-number polymorphism in nature. Proc. Roy. Soc. B, 277 (2010), 3213-3221. CrossRefGoogle ScholarPubMed
Smith, M.L., Seo, Y.R.. p53 regulation of DNA excision repair pathways. Mutagenesis, 17 (2002), 149-156. CrossRefGoogle ScholarPubMed
Stambolic, V., MacPherson, D., Sas, D., Lin, Y., Snow, B., Jang, Y., Benchimol, S., Mak, T.W.. Regulation of PTEN transcription by p53. Mol. Cell, 8 (2001), 317-325. CrossRefGoogle ScholarPubMed
Stegh, A.H.. Targeting the p53 signaling pathway in cancer therapy - the promises, challenges and perils. Expert Opinion on Therapeutic Targets, 16 (2012), 67-83. CrossRefGoogle ScholarPubMed
Stommel, J.M., Wahl, G.M.. A new twist in the feedback loop: stress-activated MDM2 destabilisation is required for p53 activation. Cell Cycle, 4 (2005), 411-417. CrossRefGoogle Scholar
Sturrock, M., Terry, A.J., Xirodimas, D.P., Thompson, A.M., Chaplain, M.A.J.. Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways. J. Theor. Biol., 273 (2011), 15-31. CrossRefGoogle ScholarPubMed
Sturrock, M., Terry, A.J., Xirodimas, D.P., Thompson, A.M., Chaplain, M.A.J.. Influence of the nuclear membrane, active transport, and cell shape on the Hes1 and p53-Mdm2 pathways: insights from spatio-temporal modelling. B. Math. Biol., 74 (2012), 1531-1579. CrossRefGoogle ScholarPubMed
Terry, A.J., Sturrock, M., Dale, J.K., Maroto, M., Chaplain, M.A.J.. A spatio-temporal model of Notch signalling in the zebrafish segmentation clock: conditions for synchronised oscillatory dynamics. PLoS ONE, 6 (2011), e16980. CrossRefGoogle ScholarPubMed
Terry, A.J., Chaplain, M.A.J.. Spatio-temporal modelling of the NF-кB signalling pathway: The roles of diffusion, active transport, and cell geometry. J. Theor. Biol., 290 (2011), 7-26. CrossRefGoogle Scholar
R. Weinberg. The Biology of Cancer. Garland Science: Taylor & Francis Group, 2007.
Xirodimas, D.P., Stephen, C.W., Lane, D.P.. Cocompartmentalization of p53 and Mdm2 is a major determinant for Mdm2-mediated degradation of p53. Experimental Cell Research, 270 (2001), 66-77. CrossRefGoogle Scholar
Zhang, T., Brazhnik, P., Tyson, J.J.. Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis. Cell Cycle, 6 (2007), 85-94. CrossRefGoogle Scholar
Supplementary material: File

OLM - MMNP N°3 Terry -mmnp201493p107

Movies

Download OLM - MMNP N°3 Terry -mmnp201493p107(File)
File 24.3 MB