Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T21:11:41.813Z Has data issue: false hasContentIssue false

Optimal Control in Coupled Within-host and Between-hostModels

Published online by Cambridge University Press:  20 June 2014

E. Numfor
Affiliation:
Department of Mathematics, University of Tennessee, TN 37996, USA
S. Bhattacharya
Affiliation:
Department of Mathematics, University of Florida, FL 32611, USA
S. Lenhart*
Affiliation:
Department of Mathematics, University of Tennessee, TN 37996, USA
M. Martcheva
Affiliation:
Department of Mathematics, University of Florida, FL 32611, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

We formulate an immuno-epidemiological model of coupled “within-host” model of ODEs and“between-host” model of ODE and PDE, using the Human Immunodeficiency Virus (HIV) forillustration. Existence and uniqueness of solution to the “between-host” model isestablished, and an explicit expression for the basic reproduction number of the“between-host” model derived. Stability of disease-free and endemic equilibria isinvestigated. An optimal control problem with drug-treatment control on the within-hostsystem is formulated and analyzed; these results are novel for optimal control of ODEslinked with such first order PDEs. Numerical simulations based on the forward-backwardsweep method are obtained.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M., May, R. M.. the Invasion, Persistence and Spread of Infectious Diseases Within Animal and Plant Communities. Phil. Trans. R. Soc. Lond., 314 (1986), 533570. CrossRefGoogle ScholarPubMed
S. Anita, V. Arnăutu, V. Capasso. An Introduction to Optimal Control Problems in Life Sciences. Springer Science, New York, 2011.
S. Anita. Analysis and Control of Age-Dependent Population Dynamics. Kluwer Academic Publishers, Dordretcht, 2000.
Anita, S.. Optimal Control Harvesting for a Nonlinear Age-dependent Population Dynamics. J. Math. Anal. Appl., 226 (1998), 622. CrossRefGoogle Scholar
Antia, R., Levin, B., May, R. M.. Witin-host Population Dynamics and the Evolution and Maintenance of Microparasite Virulence. Am. Nat., 144 (1994), 457472. CrossRefGoogle Scholar
Barbu, V., Iannelli, M.. Optimal Control of Population Dynamics. J. Optim. Theory Appl., 102 (1999), 114. CrossRefGoogle Scholar
V. Barbu. Mathematical Methods in Optimization of Differential Systems. Kluwer Academic Publishers, Dordretcht, 1994.
Brokate, M.. Pontryagin’s Principle for Control Problems in Age-Dependent Population Dynamics. J. Math. Biol., 23 (1985), 75101. CrossRefGoogle ScholarPubMed
S. Butler, D. Kirschner, S. Lenhart. Optimal Control of Chemotherapy Affecting the Infectivity Of HIV, Advances In Mathematical Population Dynamics-Molecules, Cells And Man. Editors: O. Arino, D. Axelrod, And M. Kimmel, World Scientific Press, Singapore, (1997) 557–569.
Castillo-Chavez, C., Feng, Z.. Global Stability of an Age-Structured Model for TB and its Applications to Optimal Vaccination Strategies. Math.Biosci., 151 (1998), 135154. CrossRefGoogle Scholar
Coombs, D., Gilchrist, M. A., Percus, J., Perelson, A. S.. Optimizing Viral Production. Bull. Math. Biol., 65 (2003) 10031023. CrossRefGoogle Scholar
Dissanayake, U., Dias, S., Polson, H., Longacre, S., Udagama-Randeniya, P.. Immuno-Epidemiology of Plasmodium Vivax Merozoite Surface Proten-4. Bio. Sci., 37 (2008) 97105. Google Scholar
Ekeland, I.. On the Variational Principle. J. Math. Appl., 47 (1974), 324353. Google Scholar
L. C. Evans. Partial Differential Equations. American Mathematical Society, 2nd edition, 2010.
L. C. Evans, R. F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, 1992.
Feng, Z., Velasco-Hernandez, J., Tapia-Santos, B.. A Mathematical model for Coupling within-Host and Between-Host Dynamics in an Environmentally-driven Infectious Disease. Math. Biosci., 241 (2013), 4955. CrossRefGoogle Scholar
Feng, Z., Velasco-Hernandez, J., Tapia-Santos, B., Leite, M.C.. A Model for Coupled Within-Host and Between-Host Dynamics in an Infectious Disease. Nonlinear Dyn., 68 (2012), 401411. CrossRefGoogle Scholar
Fister, K.R., Lenhart, S., McNally, J. S.. Optimizing Chemotherapy in an HIV Model. J. of Differential Equations, 1998 (1998), 112. Google Scholar
Fister, K.R., Lenhart, S.. Optimal Harvesting in an Age-Structured Predator-Prey Model. Appl. Math. Optim., 54 (2006), 115. CrossRefGoogle Scholar
Fister, K.R., Lenhart, S.. Optimal Control of a Competitive System with Age-Structured. J. Math. Anal., 291 (2004), 526537. CrossRefGoogle Scholar
Ganusov, V.V., Bergstrom, C.T., Antia, R.. Within-Host Population Dynamics and the Evolution of Microparasites in a Heterogeneous Host Population. Evolution, 56 (2002), no. 2, 213223. CrossRefGoogle Scholar
Gilchrist, M. A., Coombs, D.A.. Evolution of Virulence: Interdependence, Constraints, and Selection using Nested models. Theor. Pop. Biol., 69 (2006), 145153. CrossRefGoogle Scholar
Gilchrist, M. A., Sasaki, A.. Modeling Host-Parasite Coevolution: A Nested Approach based on Mechanistic Models. J. Theor. Biol., 218 (2002), 289308. CrossRefGoogle Scholar
Gumel, A. B., Shivakumar, P. N., Sahai, B. M.. A Mathematical Model for the Dynamics of HIV-1 During the Typical Course of Infection. Nonlinear. Anal., 47 (2001), 17731783. CrossRefGoogle Scholar
Gurtin, M. E., MacCamy, R. C.. Nonlinear Age-dependent Population Dynamics. Arch. Rat. Mech. Anal., 54 (1974), 281300. CrossRefGoogle Scholar
Hattaf, K., Yousfi, N.. Two optimal Treatments of HIV Infection Model. World J. Modell. Simul., 8 (2012), 2735. Google Scholar
Heffernan, J. M.. Mathematical Immunology of Infectious Diseases. Math. Popul. Stud., 18 (2011), 4754. CrossRefGoogle Scholar
Heffernan, J. M., Smith, R. J., Wahl, L. M.. Perspectives on Basic Reproduction Ratio. J. R. Soc. Interface, 2 (2005), 281293. CrossRefGoogle Scholar
Hellriegel, B.. Immunoepidemiology-Bridging the Gap Between Immunology and Epidemiology. TRENDS in Parasitology, 17 (2001), 102106. CrossRefGoogle Scholar
Hsieh, Y., Sheu, S.. The Effect of Density-Dependent Treatment and Behaviour change on the Dynamics of HIV Transmission. J. Math. Biol., 43 (2001), 6980. CrossRefGoogle Scholar
M. Iannelli, M. Martcheva, F. A. Milner. Gender-Structured Population Modeling: Mathematical Methods. Numerics, and Simulations, SIAM, Philadelphia, 2005.
Joshi, H.. Optimal Control of an HIV Immunology Model. Optimal Control Appl. Methods, 23 (2002), 199213. CrossRefGoogle Scholar
Joshi, H., Lenhart, S., Albright, K., Gipson, K.. Modeling the Effect of Information Campaign on the HIV Epidemic in Uganda, Math. Biosci. Eng., 5 (2008), 757770. CrossRefGoogle Scholar
Joshi, H., Lenhart, S., Li, M. Y., Wang, L.. Optimal Control Methods Applied to Disease Models. Contemp. Math., 410 (2006), 187207. CrossRefGoogle Scholar
Kgosimore, M., Lungu, E. M.. The Effects of Vertical Transmission on the Spread of HIV/AIDS in the Presence of Treatment. Math. Biosci. Eng., 3 (2006), 297312. Google Scholar
Kirschner, D.. Using Mathematics to Understand HIV Immune Dynamics. AMS Notices, 43 2 (1996), 191202. Google Scholar
Kirschner, D., Webb, G. F.. A Model for Treatment Strategy in the Chemotherapy of AIDS. Bull. Math.Biol., 58 (1996), 367391. CrossRefGoogle Scholar
Kirschner, D., Lenhart, S., Serbin, S.. Optimal Control of the Chemotherapy of HIV. J. Math. Biol., 35 (1997), 775792. CrossRefGoogle ScholarPubMed
S. Lenhart, J. T. Wortman. Optimal Control Applied to Biological Models. Taylor & Francis, Boca Raton, FL, 2007.
Li, X., Liu, J., Martcheva, M.. An Age-Structured Two-strain Epidemic Model with Superinfection. Math. Biosci. Eng., 7 (2010), 123147. CrossRefGoogle Scholar
Martcheva, M.. An Immuno-epidemiological Model of Paratuberculosis. AIP Conf. Proc., 1404 (2011), 176183. CrossRefGoogle Scholar
Martcheva, M., Milner, F. A.. A Two-Sex Age-Structured Population Model: Well Posedness. Math. Population Studies, 7 (1999), 111129. CrossRefGoogle ScholarPubMed
Murphy, L. F., Smith, S. J.. Optimal Harvesting of an Age-Structured Population. J. Math. Biol., 29 (1990), 7790 . CrossRefGoogle Scholar
Perelson, A., Kirschner, D. E., Boer, R. D.. Dynamics of HIV Infection of CD4+ T Cells. Math. Biosci., 114 (1993), 81125. CrossRefGoogle ScholarPubMed
Qiu, Z., Li, X., Martcheva, M.. Multi-strain Persistence Induced by Host Age Structure. J. Math. Anal. Appl., 391 (2012), 395612. CrossRefGoogle Scholar
Shim, E., Feng, Z., Martcheva, M.. C. Castillo-Chavez, An Age-Structured Epidemic Model of Rotavirus with Vaccination. Math. Biol., 53 (2006), 719746. CrossRefGoogle Scholar
Smith, R. J.. Explicitly Accounting for Antiretroviral Drug Uptake in Theoretical HIV Models Predicts Long-term Failure of Protease-only Therapy. J. Theor Biol., 251 (2008), 227237. CrossRefGoogle Scholar
G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, Inc, New York, 1985.
E. K. Yeargers, R. W. Shonkwiler, J. V. Herod, An Introduction to the Mathematics of Biology with Computer Algebra Models, Birkhăuser, Boston, 1996.