Article contents
Indecision in Neural Decision Making Models
Published online by Cambridge University Press: 10 March 2010
Abstract
Computational models for human decision making are typically based on the properties of bistable dynamical systems where each attractor represents a different decision. A limitation of these models is that they do not readily account for the fragilities of human decision making, such as “choking under pressure”, indecisiveness and the role of past experiences on current decision making. Here we examine the dynamics of a model of two interacting neural populations with mutual time–delayed inhibition. When the input to each population is sufficiently high, there is bistability and the dynamics is determined by the relationship of the initial function to the separatrix (the stable manifold of a saddle point) that separates the basins of attraction of two co–existing attractors. The consequences for decision making include long periods of indecisiveness in which trajectories are confined in the neighborhood of the separatrix and wrong decision making, particularly when the effects of past history and irrelevant information (“noise”) are included. Since the effects of delay, past history and noise on bistable dynamical systems are generic, we anticipate that similar phenomena will arise in the setting of other physical, chemical and neural time–delayed systems which exhibit bistability.
- Type
- Research Article
- Information
- Mathematical Modelling of Natural Phenomena , Volume 5 , Issue 2: Mathematics and neuroscience , 2010 , pp. 125 - 145
- Copyright
- © EDP Sciences, 2010
References
- 18
- Cited by