Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T06:13:53.106Z Has data issue: false hasContentIssue false

Hydrodynamics of Inelastic Maxwell Models

Published online by Cambridge University Press:  18 July 2011

Get access

Abstract

An overview of recent results pertaining to the hydrodynamic description (both Newtonianand non-Newtonian) of granular gases described by the Boltzmann equation for inelasticMaxwell models is presented. The use of this mathematical model allows us to get exactresults for different problems. First, the Navier–Stokes constitutive equations withexplicit expressions for the corresponding transport coefficients are derived by applyingthe Chapman–Enskog method to inelastic gases. Second, the non-Newtonian rheologicalproperties in the uniform shear flow (USF) are obtained in the steady state as well as inthe transient unsteady regime. Next, an exact solution for a special class of Couetteflows characterized by a uniform heat flux is worked out. This solution shares the samerheological properties as the USF and, additionally, two generalized transportcoefficients associated with the heat flux vector can be identified. Finally, the problemof small spatial perturbations of the USF is analyzed with a Chapman–Enskog-like methodand generalized (tensorial) transport coefficients are obtained.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Abramowitz, I. A. Stegun, eds. Handbook of Mathematical Functions. Dover, New York, 1972, ch. 15.
Astillero, A., Santos, A.. Aging to non-Newtonian hydrodynamics in a granular gas. Europhys. Lett., 78 (2007), No. 2, 24002. CrossRefGoogle Scholar
Baldasarri, A., Marconi, U. M. B., Puglisi, A.. Influence of correlations on the velocity statistics of scalar granular gases. Europhys. Lett., 58 (2002), No. 1, 1420. CrossRefGoogle Scholar
Barrat, A., Trizac, E., Ernst, M.H.. Quasi-elastic solutions to the nonlinear Boltzmann equation for dissipative gases. J. Phys. A: Math. Theor., 40 (2007), No. 15, 40574076. CrossRefGoogle Scholar
Ben-Naim, E., L.Krapivsky, P.. Multiscaling in inelastic collisions. Phys. Rev. E, 61 (2000), No. 1, R5R8. CrossRefGoogle ScholarPubMed
Ben-Naim, E., P. L., Krapivsky. Scaling, multiscaling, and nontrivial exponents in inelastic collision processes. Phys. Rev. E, 66 (2002), No. 1, 011309. CrossRefGoogle ScholarPubMed
Ben-Naim, E., Krapivsky, P. L.. Impurity in a granular fluid. Eur. Phys. J. E, 8 (2002), No. 5, 507515. Google Scholar
E. Ben-Naim, P. L. Krapivsky. The inelastic Maxwell model. Granular Gas Dynamics. T. Pöschel, S. Luding, eds. Lecture Notes in Physics 624, Springer, Berlin, Germany, 2003, 65–94.
G. A. Bird. Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Clarendon Press, Oxford, UK, 1994.
Bobylev, A. V., Carrillo, J. A., Gamba, I. M.. On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys., 98 (2000), Nos. 3–4, 743773. CrossRefGoogle Scholar
Bobylev, A. V., Cercignani, C.. Moment equations for a granular material in a thermal bath. J. Stat. Phys., 106 (2002), Nos. 3–4, 547567. CrossRefGoogle Scholar
Bobylev, A. V., Cercignani, C.. Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Stat. Phys., 110 (2003), Nos. 1–2, 333375. CrossRefGoogle Scholar
Bobylev, A. V., Cercignani, C., Toscani, G.. Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Stat. Phys., 111 (2003), Nos. 1–2, 403416. CrossRefGoogle Scholar
Bobylev, A. V., Gamba, I. M.. Boltzmann equations for mixtures of Maxwell gases: Exact solutions and power like tails. J. Stat. Phys. 124 (2006), Nos. 2–4, 497516. CrossRefGoogle Scholar
Bolley, F., Carrillo, J. A.. Tanaka theorem for inelastic Maxwell models. Comm. Math. Phys., 276 (2007), No. 2, 287314. CrossRefGoogle Scholar
J. J. Brey, D. Cubero. Hydrodynamic transport coefficients of granular gases. Granular Gases. T. Pöschel, T., S. Luding, eds. Lecture Notes in Physics 564, Springer, Berlin, Germany, 2001, 59–78.
Brey, J. J., Dufty, J. W., Kim, C. S., Santos, A.. Hydrodynamics for granular flow at low density. Phys. Rev. E, 58 (1998), No. 4, 46384653. CrossRefGoogle Scholar
Brey, J. J., Dufty, J. W., Santos, A.. Dissipative dynamics for hard spheres. J. Stat. Phys., 87 (1997), Nos. 5–6, 10511066. CrossRefGoogle Scholar
Brey, J. J., García de Soria, M. I., Maynar, P.. Breakdown of hydrodynamics in the inelastic Maxwell model of granular gases. Phys. Rev. E, 82 (2010), No. 2, 021303. CrossRefGoogle ScholarPubMed
Brey, J. J., Ruiz-Montero, M. J., Cubero, D.. Homogeneous cooling state of a low-density granular gas. Phys. Rev. E, 54 (1996), No. 4, 36643671. CrossRefGoogle Scholar
N. Brilliantov, T. Pöschel. Kinetic Theory of Granular Gases. Clarendon Press, Oxford, UK, 2004.
Brilliantov, N., Pöschel, T.. Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett., 74 (2006), No. 3, 424430; 75 (2006), 1, 188. CrossRefGoogle Scholar
R. Brito, M. H. Ernst. Anomalous velocity distributions in inelastic Maxwell gases. Advances in Condensed Matter and Statistical Mechanics. E. Korutcheva, R. Cuerno, eds. Nova Science Publishers, New York, USA, 2004, 177–202.
Campbell, C. S.. Rapid granular flows. Annu. Rev. Fluid Mech., 22 (1990), 5792. CrossRefGoogle Scholar
Carrillo, J. A., Cercignani, C., Gamba, I. M.. Steady states of a Boltzmann equation for driven granular media. Phys. Rev. E, 62 (2000), No. 6, 77007707. CrossRefGoogle ScholarPubMed
Cercignani, C.. Shear flow of a granular material. J. Stat. Phys., 102 (2001), Nos. 5–6, 14071415. CrossRefGoogle Scholar
S. Chapman, T. G. Cowling. The Mathematical Theory of Nonuniform Gases. Cambridge University Press, Cambridge, UK, 1970.
Coppex, F., Droz, M., Trizac, E.. Maxwell and very hard particle models for probabilistic ballistic annihilation: Hydrodynamic description. Phys. Rev. E, 72 (2005), No. 2, 021105. CrossRefGoogle ScholarPubMed
Dufty, J. W.. Kinetic theory and hydrodynamics for a low density granular gas. Adv. Compl. Syst., 4 (2001), No. 4, 397406. CrossRefGoogle Scholar
J. W. Dufty, J. J. Brey. Origins of Hydrodynamics for a Granular Gas. Modellings and Numerics of Kinetic Dissipative Systems. L. Pareschi, G. Russo, G., G. Toscani, eds. Nova Science Publishers, New York, USA, 2006, 17–30.
Ernst, M. H.. Exact solutions of the nonlinear Boltzmann equation. Phys. Rep., 78 (1981), No. 1, 1171. CrossRefGoogle Scholar
Ernst, M. H., Brito, R.. High-energy tails for inelastic Maxwell models. Europhys. Lett., 58 (2002), No. 2, 182187. CrossRefGoogle Scholar
Ernst, M. H., Brito, R.. Scaling solutions of inelastic Boltzmann equations with over-populated high-energy tails. J. Stat. Phys., 109 (2002), Nos. 3–4, 407432. CrossRefGoogle Scholar
Ernst, M. H., Brito, R.. Driven inelastic Maxwell models with high energy tails. Phys. Rev. E, 65 (2002), No. 4, 040301. CrossRefGoogle ScholarPubMed
Ernst, M. H., Trizac, E., Barrat, A.. The rich behaviour of the Boltzmann equation for dissipative gases. Europhys. Lett., 76 (2006), No. 1, 5662. CrossRefGoogle Scholar
Ernst, M. H., Trizac, E., Barrat, A.. The Boltzmann equation for driven systems of inelastic soft spheres. J. Stat. Phys., 124 (2006), Nos. 2–4, 549586. CrossRefGoogle Scholar
Esipov, S. E., Pöschel, T.. The granular phase diagram. J. Stat. Phys., 86 (1997), Nos. 5–6, 13851395. CrossRefGoogle Scholar
Garzó, V.. Nonlinear transport in inelastic Maxwell mixtures under simple shear flow. J. Stat. Phys., 112 (2003), Nos. 3–4, 657683. CrossRefGoogle Scholar
Garzó, V.. Transport coefficients for an inelastic gas around uniform shear flow: Linear stability analysis. Phys. Rev. E, 73 (2006), No. 2, 021304. CrossRefGoogle ScholarPubMed
Garzó, V.. Shear-rate dependent transport coefficients for inelastic Maxwell models. J. Phys. A: Math. Theor., 40 (2007), No. 35, 1072910757. CrossRefGoogle Scholar
V. Garzó. Mass transport of an impurity in a strongly sheared granular gas. J. Stat. Mech., (2007), P02012.
Garzó, V., Astillero, A.. Transport coefficients for inelastic Maxwell mixtures. J. Stat. Phys., 118 (2005), Nos. 5–6, 935971. CrossRefGoogle Scholar
Garzó, V., Dufty, J. W.. Dense fluid transport for inelastic hard spheres. Phys. Rev. E, 59 (1999), No. 5, 58955911. CrossRefGoogle ScholarPubMed
Garzó, V., Dufty, J. W.. Homogeneous cooling state for a granular mixture. Phys. Rev. E, 60 (1999), No. 5, 57065713. CrossRefGoogle ScholarPubMed
Garzó, V., Dufty, J. W.. Hydrodynamics for a granular mixture at low density. Phys. Fluids, 14 (2002), No. 4, 14761490. CrossRefGoogle Scholar
Garzó, V., Dufty, J. W., Hrenya, C. M.. Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport. Phys. Rev. E, 76 (2007), No. 3, 031303. CrossRefGoogle ScholarPubMed
Garzó, V., Hrenya, C. M., Dufty, J. W. Enskog theory for polydisperse granular mixtures. II. Sonine polynomial approximation. Phys. Rev. E, 76 (2007), No. 3, 031304. Google ScholarPubMed
Garzó, V., Montanero, J. M.. Transport coefficients of a heated granular gas. Physica A, 313 (2002), Nos. 3–4, 336356. CrossRefGoogle Scholar
V. Garzó, A. Santos. Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer, Dordrecht, The Netherlands, 2003.
Garzó, V., V., and Santos, A.. Third and fourth degree collisional moments for inelastic Maxwell models. J. Phys. A: Math. Theor., 40 (2007), No. 50, 1492714943. CrossRefGoogle Scholar
Garzó, V., Santos, A., Montanero, J. M.. Modifed Sonine approximation for the Navier-Stokes transport coefficients of a granular gas. Physica A, 376 (2007), 94107. CrossRefGoogle Scholar
Garzó, V., Vega Reyes, F., Montanero, J. M. Modified Sonine approximation for granular binary mixtures. J. Fluid Mech. (2009), 623, 387411. CrossRefGoogle Scholar
Goldhirsch, I.. Rapid granular flows. Annu. Rev. Fluid Mech., 35 (2003), 267293. CrossRefGoogle Scholar
Goldshtein, A., Shapiro, M.. Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech., 282 (1995), 75114. CrossRefGoogle Scholar
Haff, P. K.. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., 134 (1983), 401430. CrossRefGoogle Scholar
Kohlstedt, K., Snezhko, A., Sapozhnikov, M. V., Aranson, I. S., Ben-Naim, E. Velocity distributions of granular gases with drag and with long-range interactions. Phys. Rev. Lett., 95 (2005), No. 6, 068001. CrossRefGoogle ScholarPubMed
Krapivsky, P. L., Ben-Naim, E.. Nontrivial velocity distributions in inelastic gases. J. Phys. A: Math. Gen., 35 (2002), No. 11, L147L152. CrossRefGoogle Scholar
Lee, M., Dufty, J. W.. Transport far from equilibrium: Uniform shear flow. Phys. Rev. E, 56 (1997), No. 2, 17331745. CrossRefGoogle Scholar
Lees, A. W., Edwards, S. F.. The computer study of transport processes under extreme conditions. J. Phys. C, 5 (1972), No. 5, 19211928. CrossRefGoogle Scholar
Lutsko, J. F.. Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. Phys. Rev. E, 72 (2005), No. 2, 021306. CrossRefGoogle ScholarPubMed
Lutsko, J. F. Chapman–Enskog expansion about nonequilibrium states with application to the sheared granular fluid. Phys. Rev. E, 73 (2006), No. 2, 021302. CrossRefGoogle ScholarPubMed
Marconi, U. M. B., Puglisi, A.. Mean-field model of freely cooling inelastic mixtures. Phys. Rev. E, 65 (2002), No. 5, 051305. CrossRefGoogle Scholar
Marconi, U. M. B., Puglisi, A.. Steady state properties of a mean field model of driven inelastic mixtures. Phys. Rev. E, 66 (2002), No. 1, 011301. CrossRefGoogle ScholarPubMed
Maxwell, J. C.. On the Dynamical Theory of Gases. Phil. Trans. Roy. Soc. (London), 157 (1867), 4988; reprinted in S. G. Brush. The Kinetic Theory of Gases. An Anthology of Classic Papers with Historical Commentary. Imperial College Press, London, UK, 2003, 197–261. CrossRefGoogle Scholar
Montanero, J. M., Santos, A.. Computer simulation of uniformly heated granular fluids. Gran. Matt., 2 (2000), No. 2, 5364. CrossRefGoogle Scholar
Montanero, J. M., Santos, A., Garzó, V.. First-order Chapman-Enskog velocity distribution function in a granular gas. Physica A, 376 (2007), 7593. CrossRefGoogle Scholar
Narayan, O., Ramaswamy, S.. Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys. Rev. Lett., 89 (2002), No. 20, 200601. CrossRefGoogle ScholarPubMed
Santos, A.. Transport coefficients of d-dimensional inelastic Maxwell models. Physica A, 321 (2003), Nos. 3–4, 442466. CrossRefGoogle Scholar
A. Santos. A simple model kinetic equation for inelastic Maxwell particles. Rarefied Gas Dynamics: 25th International Symposium on Rarefied Gas Dynamics. A. K. Rebrov, M. S. Ivanov, eds. Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, 2007, pp 143-148.
Santos, A.. Solutions of the moment hierarchy in the kinetic theory of Maxwell models. Cont. Mech. Therm., 21 (2009), No. 5, 361387. CrossRefGoogle Scholar
Santos, A., Ernst, M. H.. Exact steady-state solution of the Boltzmann equation: A driven one-dimensional inelastic Maxwell gas. Phys. Rev. E, 68 (2003), No. 1, 011305. CrossRefGoogle ScholarPubMed
A. Santos, V. Garzó. Exact non-linear transport from the Boltzmann equation. Rarefied Gas Dynamics. J. Harvey, G. Lord, eds. Oxford University Press, Oxford, UK, 1995, 13–22.
A. Santos, V. Garzó. Simple shear flow in inelastic Maxwell models. J. Stat. Mech., (2007), P08021.
Santos, A., Garzó, V., Dufty, J. W.. Inherent rheology of a granular fluid in uniform shear flow. Phys. Rev. E, 69 (2004), No. 6, 061303. CrossRefGoogle ScholarPubMed
Santos, A., Garzó, V., Vega Reyes, F. An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux. Eur. Phys. J.-Spec. Top., 179 (2009), No. 1, 141156. CrossRefGoogle Scholar
Santos, A., Montanero, J. M.. The second and third Sonine coefficients of a freely cooling granular gas revisited. Gran. Matt., 11 (2009), No. 3, 157-168. CrossRefGoogle Scholar
Tij, M., Tahiri, E. E., Montanero, J. M., Garzó, V., Santos, A., Dufty, J. W.. Nonlinear Couette flow in a low density granular gas. J. Stat. Phys., 103 (2001), Nos. 5–6, 10351068. CrossRefGoogle Scholar
Trizac, E., E., Krapivsky, P. L.. Correlations in ballistic processes. Phys. Rev. Lett., 91 (2003), No. 21, 218302. CrossRefGoogle Scholar
C. Truesdell, R. G. Muncaster. Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas. Academic Press, New York, USA, 1980.
van Noije, T. P. C., Ernst, M. H.. Velocity distributions in homogeneous granular fluids: the free and the heated case. Gran. Matt., 1 (1998), No. 2, 5764. CrossRefGoogle Scholar
Vega Reyes, F., Garzó, V., Santos, A.. Class of dilute granular Couette flows with uniform heat flux. Phys. Rev. E, 83 (2011), No. 2, 021302. Google ScholarPubMed
Vega Reyes, F., Santos, A., Garzó, V.. Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic Fourier flow have in common? Phys. Rev. Lett., 104 (2010), No. 2, 028001. Google Scholar
Vega Reyes, F., Urbach, J. S.. Steady base states for Navier–Stokes granular hydrodynamics with boundary heating and shear. J. Fluid Mech., 636 (2009), 279293. CrossRefGoogle Scholar