Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T22:10:33.541Z Has data issue: false hasContentIssue false

A Fluid-Structure Interaction Model of the Cell MembraneDeformation: Formation of a Filopodium

Published online by Cambridge University Press:  07 February 2014

Get access

Abstract

In this paper we present a fluid-structure interaction model of neuron’s membranedeformation. The membrane-actin is considered as an elastic solid layer, while thecytoplasm is considered as a viscous fluid one. The membrane-actin layer is governed byelasticity equations while the cytoplasm is described by the Navier-Stokes equations. Atthe interface between the cytoplasm and the membrane we consider a match between the solidvelocity displacement and the fluid velocity as well as the mechanical equilibrium. Themembrane, which faces the extracellular medium, is free to move. This will change thegeometry in time. To take into account the deformation of the initial configuration, weuse the Arbitrary Lagrangian Eulerian method in order to take into account the meshdisplacement. The numerical simulations, show the emergence of a filopodium, a typicalstructure in cells undergoing deformation.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

B. Alberts, A. Johnson, J. Lewis J. Molecular Biology of the Cell (4th ed.). Garland Science. New York, 2002.
F. Xue, D. M. Janzen, D. A. Knecht. Contribution of Filopodia to Cell Migration: A Mechanical Link between Protrusion and Contraction. International Journal of Cell Biology, vol. 2010, Article ID 507821, 13 pages, 2010.
Budin, I., Devaraj, N.K.. Membrane Assembly Driven by a Biomimetic Coupling Reaction. Journal of the American Chemical Society 134 (2), (2011), 751-753. CrossRefGoogle Scholar
Alberts, JB, Odell, GM In Silico Reconstitution of Listeria Propulsion Exhibits Nano-Saltation. PLoS Biol 2(12): e412 (2004), 2054-2066. CrossRefGoogle Scholar
D. Boal. Mechanics of the cell. Cambridge University Press, 2002.
Nicolas Huc. Modèle pour l’étude du rôle de la membrane dans la df´ormation cellulaire : application à la spinogénèse. Université de Grenoble, 2004.
N. El-Khatib, N. Huc, Y. Goldberg, J-L Martiel. Analysis of Cell deformation with FEMLAB. Proceedings of the COMSOL Multiphysics User’s Conference, Paris 2005.
E. Evans, R. Skalak. Mechanics and thermodynamics of biomembranes. CRC Press (1980).
Gerbal, F., Chatin, P., Rabin, Y., Prost, J.. An elastic analysis of Listeria monocytogenes propulsion. Biophysical J., 79, (2000), 2259-2275. CrossRefGoogle ScholarPubMed
Hénon, S., Lenormand, G., Richert, A., Gallet, F. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophysical J., 76, (1999), 1145-1151. CrossRefGoogle ScholarPubMed
Hwang, W.C., Waugh, R.E.. Energy of dissociation of lipid from the membrane skeleton of red blood cells. Biophysical J., 72, (1997), 2669-2678. CrossRefGoogle ScholarPubMed
Lenormand, G., Hénon, S., Richert, A., Siméon, J., Gallet, F. Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton. Biophysical J. 81, (2001), 43-56. CrossRefGoogle ScholarPubMed
Mogilner, A., Oster, G. Cell motility driven by actin polymerization. Biophysical J., 71, (1996), 3030-3045. CrossRefGoogle Scholar
Mogilner, A., Edelstein-Keshet, L. Regulation of actin dynamics in rapidly moving cells: A quantitative analysis. Biophysical J., 83, (2002), 1237-1258. CrossRefGoogle ScholarPubMed
Needham, D., Hochmuth, R.M.. A sensitive measure of surface stress in the resting neutrophil. Biophysical J., 61, (1992), 1664-1670. CrossRefGoogle ScholarPubMed
Pollard, T., Borisy, G.. Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112, (2003), 453-465. CrossRefGoogle ScholarPubMed
Svitkina, T.M., Bulanova, E.A., Chaga, O.Y., Vignjevic, D.M., Kojima, S., Vasiliev, J.M., Borisy, G.. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell. Biol., 160, (2003), 409-421. CrossRefGoogle Scholar
Waugh, R. E., Bauserman, R. G.. Physical measurements of bilayer-skeletal separation forces. Ann. Biomed. Eng. 23, 1995, 308-321 CrossRefGoogle ScholarPubMed
F. Nobile. Numerical Approximation of Fluid- Structure Interaction Problems with Aplication to Haemodynamics. PhD thesis, 2001.
Janela, J., Moura, A., Sequeira, A.. A 3D non- Newtonian fluid-structure interaction model for blood flow in arteries. Journal of Computational and Applied Mathematics, 234, 2010, 2783-2791. CrossRefGoogle Scholar
Formaggia, L., Moura, A., Nobile, F.. On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. ESAIM: Mathematical Modelling and Numerical Analysis, 41, 2007, 743-769. CrossRefGoogle Scholar
Chambolle, A., Desjardins, B., Esteban, M., Grandmont, C.. Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech., 7, 2005, 368-404. CrossRefGoogle Scholar
Beirão da Veiga, H.. On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech., 6, 2004, 21-52. CrossRefGoogle Scholar
Coutand, D., Shkoller, S.. The interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Ration. Mech. Anal. 179, 2006, 303-352. CrossRefGoogle Scholar
Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.. Arbitrary lagrangian-eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 29, 1981, 329-349. CrossRefGoogle Scholar
M. À. Fernández, M. Moubachir A Newton method using exact jacobians for solving fluid-structure coupling. Computers and Structures, v.83, 2005, 127-142.