Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T02:17:39.894Z Has data issue: false hasContentIssue false

Bulk-mediated Surface Diffusion on a Cylinder in the Fast Exchange Limit

Published online by Cambridge University Press:  24 April 2013

A. V. Chechkin
Affiliation:
Institute for Theoretical Physics NSC KIPT, Akademicheskaya st.1, 61108 Kharkov, Ukraine and Max-Planck Institute for Physics of Complex Systems, Nöthnitzer Str. 38, D-01187 Dresden, FRG
I. M. Zaid
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
M. A. Lomholt
Affiliation:
MEMPHYS - Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
I. M. Sokolov
Affiliation:
Institut für Physik, Humboldt Universität zu Berlin, Newtonstraße 15, D-12489 Berlin, FRG
R. Metzler*
Affiliation:
Institute for Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany and Department of Physics, Technical University of Tampere, FI-33101 Tampere, Finland
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

In various biological systems and small scale technological applications particles transiently bind to a cylindrical surface. Upon unbinding the particles diffuse in the vicinal bulk before rebinding to the surface. Such bulk-mediated excursions give rise to an effective surface translation, for which we here derive and discuss the dynamic equations, including additional surface diffusion. We discuss the time evolution of the number of surface-bound particles, the effective surface mean squared displacement, and the surface propagator. In particular, we observe sub- and superdiffusive regimes. A plateau of the surface mean-squared displacement reflects a stalling of the surface diffusion at longer times. Finally, the corresponding first passage problem for the cylindrical geometry is analysed.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bychuk, O. V., O'Shaughnessy, B.. Anomalous diffusion at liquid surfaces. Phys. Rev. Lett. 74 (1995), 1795-1798. CrossRefGoogle Scholar
Bychuk, O. V., O'Shaughnessy, B.. Role of bulk-surface exchange in diffusion at liquid surfaces: non-Fickian relaxation kinetics. Langmuir 10 (1994), 3260-3267. CrossRefGoogle Scholar
Revelli, J. A., Budde, C. E., Prato, D., Wio, H. S.. Bulk mediated surface diffusion: non markovian dynamics for the desorption process. New J. Phys. 7 (2005), art. no. 16. CrossRefGoogle Scholar
Georgievskii, Yu., Medvedev, E. S., Stuchebrukhov, A. A., Proton transport via coupled surface and bulk diffusion. J. Chem. Phys. 116 (2002), 1692;
Bychuk, O. V., O'Shaugnessy, B.. Anomalous surface diffusion: a numerical study. J. Chem. Phys. 101 (1994), 772-780
Oshanin, G., Tamm, M., Vasilyev, O.. Narrow-escape times for diffusion in microdomains with a particle-surface affinity: mean-field results. J. Chem. Phys. 132 (2010), art. no. 235101. CrossRefGoogle ScholarPubMed
Bénichou, O., Grebenkov, D., Levitz, P., Loverdo, C., Voituriez, R.. Optimal reaction time for surface-mediated diffusion. Phys. Rev. Lett. 105 (2010), art. no. 150606;
Toimil-Molares, M. E., Roentsch, L., Sigle, W., Heinig, K.-H., Trautmann, C., Neumann, R.. Pipetting nanowires: in situ visualization of solid-state nanowire-to-nanoparticle transformation driven by surface diffusion-mediated capillarity. Adv. Funct. Mater. 22 (2012), 695-701. CrossRefGoogle Scholar
Coppey, M., Bénichou, O., Klafter, J., Moreau, M., Oshanin, G.. Catalytic reactions with bulk-mediated excursions: Mixing fails to restore chemical equilibrium. Phys. Rev. E 69 (2004), art. no. 036115. CrossRefGoogle ScholarPubMed
Kimmich, R., Stapf, S., Callaghan, P., Coy, A., Microstructure of porous media probed by NMR techniques in sub-micrometer length scales. Magnet. Reson. Imaging 12 (1994), 339-343. CrossRefGoogle ScholarPubMed
Stapf, S., Kimmich, R., Seitter, R.-O.. Proton and deuteron field-cycling NMR relaxometry of liquids in porous glasses: evidence for Lévy-walk statistics. Phys. Rev. Lett. 75 (1995), 2855-2858. CrossRefGoogle ScholarPubMed
Levitz, P., Zinsmeister, M., Davidson, P., Constantin, D., Poncelet, O.. Intermittent Brownian dynamics over a rigid strand: heavily tailed relocation statistics in a simple geometry. Phys. Rev. E 78 (2008), art. no. 030102(R). CrossRefGoogle Scholar
Velosoa, M. V., Souza Filhoa, A. G., Mendes Filhoa, J., Faganb, S. B.. Ab initio study of covalently functionalized carbon nanotubes. Chem. Phys. Lett. 430 (2006), 71-74. CrossRefGoogle Scholar
von Hippel, P. H., Berg, O. G.. Facilitated target location in biological systems. J. Biol. Chem. 264 (1989), 675-678. Google ScholarPubMed
Bonnet, I., Biebricher, A., Porté, P.-L.. Loverdo, C., Bénichou, O., Voituriez, R., Escudé, C.. Wende, W., Pingoud, A., Desbiolles, P.. Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Nucl. Acids Res. 36, 4118 (2008);
Wang, Y. M., Austin, R. H., Cox, E. C.. Single molecule measurements of repressor protein 1D diffusion on DNA. Phys. Rev. Lett. 97 (2006), art. no. 048302. Google ScholarPubMed
Bustamante, C., Chemla, Y. R., Forde, N. R., Izhaky, D., Mechanical processes in biochemistry. Ann. Rev. Biochem. 73 (2004), 705-748. CrossRefGoogle Scholar
Coyne, S. I., Mendelson, N. H.. Use of Bacillus subtilis minicells to demonstrate an antigenic relationship between the poles and lateral cylindrical regions of rod-shaped cells. Infection and Immunity 12 (1975), 1189-1194. Google Scholar
Chechkin, A. V., Zaid, I. M., Lomholt, M. A., Sokolov, I. M., Metzler, R.. Bulk-mediated surface diffusion along a cylinder: propagators and crossovers. Phys. Rev. E 79 (2009), art. no. 040105(R);
Lomholt, M. A., Zaid, I. M., Metzler, R.. Subdiffusion and weak ergodicity breaking in the presence of a reactive boundary. Phys. Rev. Lett. 98 (2007), art. no. 200603;
Winter, R. B., Berg, O. G., von Hippel, P. H., Diffusion-driven mechanics of protein translocation on nucleic acids. 3. The escherichia coli lac repressor-operator interaction: kinetic measurements and conclusions. Biochem. 20 (1981), 6961-6977. CrossRefGoogle Scholar
Medvedev, E. S., Stuchebrukhov, A. A.. Mechanism of long-range proton translocation along biological membranes. FEBS Lett. 587 (2013), 345-349. CrossRefGoogle ScholarPubMed
Metzler, R., Klafter, J.. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1-77;
Chechkin, A. V., Gonchar, V. Yu., Klafter, J., Metzler, R., Tanatarov, L. V.. Lévy flights in a steep potential well. J. Stat. Phys. 115 (2004), 1505-1535. CrossRefGoogle Scholar
S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, New York, 1993.
Berg, O. G., Blomberg, C.. Association kinetics with coupled diffusional flows. Special application to the lac repressor-operator system. Biophys. Chem. 4 (1976), 367-381. CrossRefGoogle ScholarPubMed
Havlin, S., Weiss, G. H.. A new class of long-tailed pausing time densities for the CTRW. J. Stat. Phys. 58 (1990), 1267-1273. CrossRefGoogle Scholar