Hostname: page-component-6d856f89d9-8l2sj Total loading time: 0 Render date: 2024-07-16T04:13:35.820Z Has data issue: false hasContentIssue false

Analysis of a Nonautonomous HIV/AIDS Model

Published online by Cambridge University Press:  08 April 2010

G. P. Samanta*
Affiliation:
Mathematical Institute, Slovak Academy of Sciences Stefanikova 49, 81473 Bratislava, Slovak Republic
*
* Present address: Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah-711103, India. E-mail: [email protected]
Get access

Abstract

In this paper we have considered a nonlinear and nonautonomous stage-structured HIV/AIDS epidemic model with an imperfect HIV vaccine, varying total population size and distributed time delay to become infectious due to intracellular delay between initial infection of a cell by HIV and the release of new virions. Here, we have established some sufficient conditions on the permanence and extinction of the disease by using inequality analytical technique. We have obtained the explicit formula of the eventual lower bounds of infected persons. We have introduced some new threshold values R0 and R and further obtained that the disease will be permanent when R0 > 1 and the disease will be going to extinct when R < 1. By Lyapunov functional method, we have also obtained some sufficient conditions for global asymptotic stability of this model. The aim of the analysis of this model is to trace the parameters of interest for further study, with a view to informing and assisting policy-maker in targeting prevention and treatment resources for maximum effectiveness.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. M.. The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS . J. AIDS, 1 (1988), 241256.Google Scholar
Anderson, R. M. May, R. M.. Population Biology of Infectious Diseases. Part I . Nature, 280 (1979), 361367.CrossRefGoogle ScholarPubMed
Anderson, R. M., Medly, G. F., May, R. M. Johnson, A. M.. A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS . IMA J. Math. Appl. Med. Biol., 3 (1986), 229263.CrossRefGoogle Scholar
Bachar, M. Dorfmayr, A.. HIV treatment models with time delay . C.R. Biologies, 327 (2004), 983994.CrossRefGoogle ScholarPubMed
BBC News (BBC). HIV reduces infection. September 2009, http://news.bbc.co.uk/2/hi/health/8272113.stm .
Blower, S.. Calculating the consequences: HAART and risky sex . AIDS, 15 (2001), 13091310.CrossRefGoogle ScholarPubMed
Brauer, F.. Models for the disease with vertical transmission and nonlinear population dynamics . Math. Biosci., 128 (1995), 1324.CrossRefGoogle ScholarPubMed
S. Busenberg, K. Cooke. Vertically transmitted diseases. Springer, Berlin, 1993.
Cai, L. M., Li, X., Ghosh, M. Guo, B.. Stability of an HIV/AIDS epidemic model with treatment . J. Comput. Appl. Math., 229 (2009), 313323.CrossRefGoogle Scholar
V. Capasso. Mathematical structures of epidemic systems, Lectures Notes in Biomathematics, Vol. 97. Springer-Verlag, Berlin, 1993.
Centers for Disease Control and Prevention. HIV and its transmission. Divisions of HIV/AIDS Prevention, 2003.
Connell McCluskey, C.. A model of HIV/AIDS with staged progression and amelioration . Math. Biosci., 181 (2003), 116.CrossRefGoogle Scholar
Culshaw, R. V. Ruan, S.. A delay-differential equation model of HIV infection of CD4 + T -cells . Math. Biosci., 165 (2000), 2739.CrossRefGoogle Scholar
J. M. Cushing. Integrodifferential equations and delay models in population dynamics. Spring, Heidelberg, 1977.
O. Diekmann, J. A. P. Heesterbeek. Mathematical epidemiology of infectious diseases: model building, analysis, and interpretation. John Wiley and Sons Ltd., Chichester, New York, 2000.
Elbasha, E. H. Gumel, A. B.. Theoretical assessment of public health impact of imperfect prophylactic HIV-1 vaccines with therapeutic benefits . Bull. Math. Biol., 68 (2006), 577614.CrossRefGoogle Scholar
Esparza, J. Osmanov, S.. HIV vaccine: a global perspective . Curr. Mol. Med., 3 (2003), 183193.CrossRefGoogle ScholarPubMed
K. Gopalsamy. Stability and oscillations in delay-differential equations of population dynamics. Kluwer, Dordrecht, 1992.
Greenhalgh, D., Doyle, M. Lewis, F.. A mathematical treatment of AIDS and condom use . IMA J. Math. Appl. Med. Biol., 18 (2001), 225262.CrossRefGoogle ScholarPubMed
Gumel, A. B., McCluskey, C. C. van den Driessche, P.. Mathematical study of a staged-progression HIV model with imperfect vaccine . Bull. Math. Biol., 68 (2006), 21052128.CrossRefGoogle ScholarPubMed
J. K. Hale, S. M. V. Lunel. Introduction to functional differential equations. Springer-Verlag, New York, 1993.
Herz, A. V. M., Bonhoeffer, S., Anderson, R. M., May, R. M. Nowak, M. A.. Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay . Proc. Nat. Acad. Sci. USA, 93 (1996), 72477251.CrossRefGoogle ScholarPubMed
Herzong, G. Redheffer, R.. Nonautonomous SEIRS and Thron models for epidemiology and cell biology . Nonlinear Anal.: RWA, 5 (2004), 3344.CrossRefGoogle Scholar
H. W. Hethcote, J. W. Van Ark. Modelling HIV transmission and AIDS in the United States, in: Lect. Notes Biomath., vol. 95. Springer, Berlin, 1992.
Hsieh, Y. H. Chen, C. H.. Modelling the social dynamics of a sex industry: Its implications for spread of HIV/AIDS . Bull. Math. Biol., 66 (2004), 143166.CrossRefGoogle ScholarPubMed
Hsieh, Y. H. Cooke, K.. Behaviour change and treatment of core groups: its effect on the spread of HIV/AIDS . IMA J. Math. Appl. Med. Biol., 17 (2000), 213241.CrossRefGoogle ScholarPubMed
D. W. Jordan, P. Smith. Nonlinear ordinary differential equations. Oxford University Press, New York, 2004.
Kermack, W. O. Mckendrick., A. G. Contributions to the mathematical theory of epidemics. Part I . Proc. R. Soc. A, 115 (1927), No. 5, 700721.CrossRefGoogle Scholar
Y. Kuang. Delay-differential equations with applications in population dynamics. Academic Press, New York, 1993.
Leenheer, P. D. Smith, H. L.. Virus dynamics: a global analysis . SIAM. J. Appl. Math., 63 (2003), 13131327.Google Scholar
Li, M. Y., Smith, H. L. Wang, L.. Global dynamics of an SEIR epidemic with vertical transmission . SIAM. J. Appl. Math., 62 (2001), No. 1, 5869.Google Scholar
M. C. I. Lipman, R. W. Baker, M. A. Johnson. An atlas of differential diagnosis in HIV disease. CRC Press-Parthenon Publishers, pp. 22-27, 2003.
Z. Ma, Y. Zhou, W. Wang, Z. Jin. Mathematical modelling and research of epidemic dynamical systems. Science Press, Beijing, 2004.
May, R. M. Anderson, R. M.. Transmission dynamics of HIV infection . Nature, 326 (1987), 137142.CrossRefGoogle ScholarPubMed
Medical News Today, dated 9th February, 2007, East Sussex, TN 40 9BA, United Kingdom.
Meng, X., Chen, L. Cheng, H.. Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination . Appl. Math. Comput., 186 (2007), 516529.Google Scholar
Naresh, R., Tripathi, A. Omar, S.. Modelling the spread of AIDS epidemic with vertical transmission . Appl. Math. Comput., 178 (2006), 262272.Google Scholar
Perelson, A. S. Nelson, P. W.. Mathematical analysis of HIV-1 dynamics in vivo . SIAM Rev., 41 (1999), No. 1, 344.CrossRefGoogle Scholar
Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. Ho, D. D.. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time . Science, 271 (1996), 15821586.CrossRefGoogle Scholar
Samanta, G. P.. Dynamic behaviour for a nonautonomous heroin epidemic model with time delay . J. Appl. Math. Comput., 2009, DOI 10.1007/s12190-009-0349-z. Google Scholar
Shiver, J. Emini, E.. Recent advances in the development of HIV-1 vaccines using replication-incompetant adenovirus vectors . Ann. Rev. Med., 55 (2004), 355372.CrossRefGoogle ScholarPubMed
Stoddart, C. A. Reyes, R. A.. Models of HIV-1 disease: A review of current status . Drug Discovery Today: Disease Models, 3 (2006), No. 1, 113119.Google Scholar
Teng, Z. Chen, L.. The positive periodic solutions of periodic Kolmogorov type systems with delays . Acta Math. Appl. Sin., 22 (1999), 446456.Google Scholar
Thieme, H. R.. Uniform weak implies uniform strong persistence for non-autonomous semiflows . Proc. Am. Math. Soci., 127 (1999), 23952403.CrossRefGoogle Scholar
Thieme, H. R.. Uniform persistence and permanence for nonautonomous semiflows in population biology . Math. Biosci., 166 (2000), 173201.CrossRefGoogle Scholar
UNAIDS. 2007 AIDS epidemic update. WHO, December 2007.
Wang, L. Li, M. Y.. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T -cells . Math. Biosci., 200 (2006), 4457.CrossRefGoogle Scholar
Wang, K., Wang, W. Liu, X.. Viral infection model with periodic lytic immune response . Chaos Solitons Fractals, 28 (2006), No. 1, 9099.CrossRefGoogle Scholar
Wikipedia. HIV vaccine. September, 2009, http://en.wikipedia.org/wiki/HIV_vaccine.
Zhang, T. Teng, Z.. On a nonautonomous SEIRS model in epidemiology . Bull. Math. Biol., 69 (2007), 25372559.CrossRefGoogle ScholarPubMed
Zhang, T. Teng, Z.. Permanence and extinction for a nonautonomous SIRS epidemic model with time delay . Appl. Math. Model., 33 (2009), 10581071.CrossRefGoogle Scholar
Zinkernagel, R. M.. The challenges of an HIV vaccine enterprise . Science, 303 (2004), 12941297.CrossRefGoogle ScholarPubMed