Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T06:11:47.140Z Has data issue: false hasContentIssue false

Weighted Elastic Net Model for Mass Spectrometry ImagingProcessing

Published online by Cambridge University Press:  28 April 2010

Get access

Abstract

In proteomics study, Imaging Mass Spectrometry (IMS) is an emerging and very promisingnew technique for protein analysis from intact biological tissues. Though it has showngreat potential and is very promising for rapid mapping of protein localization and thedetection of sizeable differences in protein expression, challenges remain in dataprocessing due to the difficulty of high dimensionality and the fact that the number ofinput variables in prediction model is significantly larger than the number ofobservations. To obtain a complete overview of IMS data and find trace features based onboth spectral and spatial patterns, one faces a global optimization problem. In thispaper, we propose a weighted elastic net (WEN) model based on IMS data processing needs ofusing both the spectral and spatial information for biomarker selection andclassification. Properties including variable selection accuracy of the WEN model arediscussed. Experimental IMS data analysis results show that such a model not only reducesthe number of side features but also helps new biomarkers discovery.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Breiman, L.. Better subset regression using the nonnegative garrote Technometrics, 37 (1995), 373-384. CrossRefGoogle Scholar
Chaurand, P., Sanders, M.E., Jensen, R.A., Caprioli, R.M.. Profiling and imaging proteins in tissue sections by MS . Anal. Chem., 76 (2004), 86A-93A.CrossRefGoogle ScholarPubMed
G. Chu, B. Narasimhan, R. Tibshirani, V.G. Tusher. SAM Version 1.12: user’s guide and technical document.[http://www-stat.stanford.edu/ tibs/SAM/]
Candes, E., Tao, T.. The dantzig selector: statistical estimation when p is much larger than n . Annals of Statistics, 35 (2007), 2313.Google Scholar
Efron, B., Hastie, T., Tibshirani, R.. Least angle regression . Annals of Statistics, 32 (2004), 407-499. Google Scholar
Fan, J., Li, R.. Variable selection via nonconcave penalized Likelihood and Its Oracle Properties . Journal of the American Statistical Association, 96 (2001), 1348-1360.CrossRefGoogle Scholar
Frank, I., Friedman, J.. A statistical view of some chemometrics regression tools . Technometrics, 35 (1993), 109-148.CrossRefGoogle Scholar
M. Gerhard, S.O. Deininger, F.M. Schleif. Statistical Classification and visualization of MALDI imaging data. CBMS’07 2007; 0-7695-2905-4/07.
Graham, D.J., Wagner, M.S., Castner, D.G.. Information from complexity: challenges of TOF-SIMS data interpretation . Applied surface science, 252 (2006), 6860-6868.CrossRefGoogle Scholar
Hall, P., Marron, J.S., Neeman, A.. Geometric representation of high dimension low sample size data . J. R. Statist. Soc. B, 67 (2005), 427.CrossRefGoogle Scholar
T. Hastie, R. Tibshirani, J. Friedman. The elements of statistical learning; Data mining, inference and prediction. Springer, New York, 2001.
Hoerl, A. E., Kennard, R. W.. Ridge regression: Biased estimation for nonorthogonal problems . Technometrics, 12 (1970), 55-67.CrossRefGoogle Scholar
Huang, J., Horowitz, J., Ma, S.. Asymptotic properties of bridge estimators in sparse high-dimensional regression models . Annals Statatistics, 36 (2008), 587-613.CrossRefGoogle Scholar
Huang, J., Ma, S., Zhang, C.. Adaptive Lasso for sparse high dimensional regression models . Stat Sin, 18 (2008), 1603-1618.Google Scholar
James, G.M., Radchenko, P., and Lv, J.. DASSO: connections between the Dantzig selector and lasso . J. R. Statist. Soc. B, 71 (2009) pp. 127(C142. CrossRefGoogle Scholar
J. Jia, B. Yu. On model selection consistency of the elastic net when pn. Tech. Report 756, Statistics, UC Berkeley, 2008.
Knight, K., Fu, W.. Asymptotics for Lasso-type estimators . Annals Statistics, 28 (2000), 1356-1378.Google Scholar
Matoba, S., Kang, J.G., Patino, W.D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P.J., Bunz, F., Hwang, P.M.. P53 regulates mitochondrial respiration . Science, 312 (2006), 1650-1653.CrossRefGoogle ScholarPubMed
Ma, S., Huang, J.. Penalized feature selection and classification in bioinformatics . Brief in Bioinform., 9 (2008), 392-403.CrossRefGoogle ScholarPubMed
Mayevsky, A.. Mitochondrial function and energy metabolism in cancer cells: Past overview and future perspectives . Mitochondrion, 9 (2009), 165-179.CrossRefGoogle ScholarPubMed
McCombie, G., Staab, D., Stoeckli, M., Knochenmuss, R.. Spatial and Spectral correlation in MALDI mass spectrometry images by clustering and multivariate analysis . Anal. Chem. 2005;77:6118-6124. CrossRefGoogle Scholar
Meinshausen, N., Yu, B.. Lasso-type recovery of sparse representations for high-dimensional data . Annals of Statistics, 37 (2009), no. 1, 246-270. CrossRefGoogle Scholar
Meistermann, H., Norris, J.L., Aerni, H.R., Cornett, D.S., Friedlein, A., Erskine, A.R., Augustin, A., De Vera Mudry, M.C., Ruepp, S., Suter, L., Langen, H., Caprioli, R.M., Ducret, A.. Biomarker discovery by imaging mass spectrometry: transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat . Mol Cell Proteomics, 5 (2006), 1876-1886.CrossRefGoogle ScholarPubMed
E.R. Muir, I.J. Ndiour, N.A. Le Goasduff, R.A. Moffitt, Y. Liu, M.C. Sullards, A.H. Merrill, Y. Chen, M.D. Wang. Multivariate analysis of imaging mass spectrometry data. BIBE 2007 proceedings of the 7th IEEE international conference 472-479.
Tibshirani, R.. Regression shrinkage and selection via the lasso . J. R. Statist. Soc., Series B., 58(1), 1996, 267-288. Google Scholar
Yuan, M., Lin, Y.. On the nonnegative garrote estimator . J. R. Statist. Soc. B., 69 (2007), 143-161.CrossRefGoogle Scholar
F. Zhang, D. Hong, S. Frappier, D.S. Cornett, R.M. Caprioli. Elastic Net Based Framework for Imaging Mass Spectrometry Data Biomarker Selection and Classification. Manuscript, 2009.
Zhang, H., Ahn, J., Lin, X., Park, C.. Gene selection using support vector machines with non-convex penalty . Bioinformatics, 22 (2006), 88-95.CrossRefGoogle ScholarPubMed
Zhao, P., Yu, B.. On model selection consistency of lasso . The Journal of Machine Learning Research, 7 (2006), 2541-2563.Google Scholar
S. Zhou, S. Geer, P. Buhlmann. Adaptive lasso for high dimensional regression and gaussian graphical modeling. manuscript, 2009.
Zou, H.. The adaptive lasso and its oracle properties . Journal of the American Statistical Association, 101 (2006), 1418-1429.CrossRefGoogle Scholar
Zou, H., Hastie, T.. Regularization and variable selection via the elastic net . J. R. Statist. Soc., B. 67(2005), Part 2, 301-320. CrossRefGoogle Scholar
Zou, H., Zhang, H.. On the adaptive elastic-net with a diverging number of parameters . Annals of statistics, 37 (2009), 1733-1751.CrossRefGoogle ScholarPubMed