Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T22:47:12.662Z Has data issue: false hasContentIssue false

A Model of Large-Scale Evolution of Complex FoodWebs

Published online by Cambridge University Press:  08 April 2010

C. Guill*
Affiliation:
Institute of Condensed Matter Physics, Darmstadt University of Technology Hochschulstraße 6, D-64289 Darmstadt, Germany
*
Get access

Abstract

A simple model of biological evolution of community food webs is introduced. This modelis based on the niche model, which is known to generate model food webs that are verysimilar to empirical food webs. The networks evolve by speciation and extinction.Co-extinctions due to the loss of all prey species are found to play a major role indetermining the longterm shape of the food webs. The central aim is to design the modelsuch that the characteristic parameters of the niche model food webs remain in realisticintervals. When the mutation rule is chosen accordingly, it is found that food webs with acomplex, biologically meaningful structure emerge and that the statistics of extinctionevents agrees well with that observed in the paleontological data.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J.. Cope’s rule and the dynamics of body mass evolution in north american fossil mammals . Science, 280 (1998), 731-734.CrossRefGoogle ScholarPubMed
Nunes Amaral, L.A. Meyer, M.. Environmental changes, coextinction, and patterns in the fossil record . Phys. Rev. Lett., 82 (1999), 652-655.CrossRefGoogle Scholar
Bak, P. Sneppen, K.. Punctuated equilibrium and criticality in a simple model of evolution . Phys. Rev. Lett., 71 (1993), 4083-4086.CrossRefGoogle Scholar
Brose, U., et al. Consumer-resource body-size relationships in natural food webs . Ecology, 87 (2006), 24112417. CrossRefGoogle ScholarPubMed
Camacho, J., Guimerà, R., Nunes Amaral, L.A.. Analytical solution of a model for complex food webs . Phys. Rev. E, 65 (2002), 030901(R). CrossRefGoogle ScholarPubMed
Camacho, J., Guimerà, R., Nunes Amaral, L.A.. Robust patterns in food web structure . Phys. Rev. Lett., 88 (2002), 228102. CrossRefGoogle ScholarPubMed
Cattin, M.-F., Bersier, L.-F., Banašek-Richter, C., Baltensperger, R. Gabriel, J.-P.. Phylogenetic constraints and adaptation explain food-web structure . Nature, 427 (2004), 835-839.CrossRefGoogle ScholarPubMed
Christensen, K., Di Collobiano, S.A., Hall, M. Jenssen, H.J.. Tangled Nature: A model of evolutionary ecology . J. Theor. Biol., 216 (2002), 73-84.CrossRefGoogle ScholarPubMed
Clauset, A. Erwin, D.E.. The evolution and distribution of species body size . Science, 321 (2008), 399-401.CrossRefGoogle ScholarPubMed
Cohen, J.E., Pimm, S.L., Yodzis, P. Saldaña, J.. Body sizes of animal predators and animal prey in food webs . J. Anim. Ecol., 62 (1993), 67-78.CrossRefGoogle Scholar
Drossel, B.. Extinction events and species lifetimes in a simple ecological model . Phys. Rev. Lett., 81 (1998), 5011-5014.CrossRefGoogle Scholar
Drossel, B.. Biological evolution and statistical physics . Adv. Phys., 50 (2001), 209-295.CrossRefGoogle Scholar
Drossel, B., Higgs, P.G. McKane, A.J.. The influence of predator-prey dynamics on the long-term evolution of food web structure . J. Theor. Biol., 208 (2001), 91-107.CrossRefGoogle ScholarPubMed
Drossel, B., McKane, A.J. Quince, C.. The impact of nonlinear functional responses on the long-term evolution of food web structure . J. Theor. Biol., 229 (2004), 539-548.CrossRefGoogle Scholar
Dunne, J.A., Williams, R.J. Martinez, N.D.. Network structure and robustness of marine food webs . Mar. Ecol. Prog. Ser., 273 (2004), 291-302.CrossRefGoogle Scholar
N. Eldredge, S.J. Gould. In: Models in Paleobiology, Schopf, T.J.M. (Ed.), Freeman, San Francisco, 1972.
Garcia-Domingo, J.L. Saldaña, J.. Food-web complexity emerging from ecological dynamics on adaptive networks . J. Theor. Biol., 247 (2007), 819-826.CrossRefGoogle ScholarPubMed
Gould, S.J. Eldredge, N.. Punctuated equilibrium comes of age . Nature, 366 (1993), 223-227.CrossRefGoogle ScholarPubMed
Guill, C. Drossel, B.. Emergence of complexity in evolving niche model food webs . J. Theor. Biol., 251 (2008), 108-120.CrossRefGoogle ScholarPubMed
Hardin, G.. The competitive exclusion principle . Science, 131 (1960), 1292-1297.CrossRefGoogle ScholarPubMed
Hone, D.W.E., Benton, M.J.. The evolution of large size: how does Cope’s rule work? Tr. Ecol. Evol., 20 (2005), 4-6. CrossRefGoogle ScholarPubMed
Loeuille, N. Loreau, M.. Evolutionary emergence of size-structured food webs . Proc. Nat. Acad. Sci., 102 (2005), 5761-5766.CrossRefGoogle ScholarPubMed
Kartascheff, B., Guill, C. Drossel, B.. Positive complexity-stability relations in food web models without foraging adaptation . J. Theor. Biol., 259 (2009), 12-23.CrossRefGoogle ScholarPubMed
Kauffman, S.A. Johnsen, S.. Coevolution to the edge of chaos: Coupled fitness landscapes, poised states, and coevolutionary avalanches . J. Theor. Biol., 149 (1991), 467-505.CrossRefGoogle ScholarPubMed
Kondoh, M.. Foraging adaptation and the relationship between food-web complexity and stability . Science, 299 (2003), 1388-1391.CrossRefGoogle ScholarPubMed
Kondoh, M.. Does foraging adaptation create the positive complexity-stability relationship in realistic food-web structure? J. Theor. Biol., 238 (2006), 646-651. CrossRefGoogle ScholarPubMed
May, R.M.. Unanswered questions in ecology . Phil. Trans. R. Soc. Lond. B, 354 (1999), 1951-1959.CrossRefGoogle ScholarPubMed
Newman, M.E.J.. Self-organized criticality, evolution and the fossil extinction record . Proc. R. Soc. Lond. B, 263 (1996), 1605-1610.CrossRefGoogle Scholar
Newman, M.E.J.. A model of mass extinction . J. Theor. Biol., 189 (1997), 235-252.CrossRefGoogle ScholarPubMed
M.E.J. Newman, R.G. Palmer. Models of Extinction: A Review. arXiv:adap-org/ 9908002v1 (1999).
Paczuski, M., Maslov, S. Bak, P.. Avalanche dynamics in evolution, growth, and depinning models . Phys. Rev. E, 53 (1996), 414-443.CrossRefGoogle ScholarPubMed
Raup, D.M.. Biological extinction in earth history . Science, 231 (1986), 1528-1533.CrossRefGoogle ScholarPubMed
Raup, D.M.. A kill curve for phanerozoic marine species . Paleobiology, 17 (1991), 37-48.CrossRefGoogle ScholarPubMed
Rikvold, P.A.. Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution . J. Math. Biol., 55 (2007), 653-677. CrossRefGoogle ScholarPubMed
Rikvold, P.A., Sevim, V.. Individual-based predator-prey model for biological coevolution: Fluctuations, stability, and community structure . Phys. Rev. E, 75 (2007), 051920. CrossRefGoogle ScholarPubMed
P.A. Rikvold. Complex dynamics in coevolution models with ratio-dependent functional response. Ecol. Comp. (2009), in press.
Rossberg, A.G., Matsuda, H., Amemiya, T. Itoh, K.. An explanatory model for food-web structure and evolution . Ecol. Comp., 2 (2005), 312-321.CrossRefGoogle Scholar
Rossberg, A.G., Matsuda, H., Amemiya, T. Itoh, K.. Food webs: Experts consuming families of experts . J. Theor. Biol., 241 (2006), 552-563.CrossRefGoogle Scholar
Rossberg, A.G., Ishii, R., Amemiya, T. Itoh, K.. The top-down mechanism for body-mass-abundance scaling . Ecology, 89 (2008), 567-580.CrossRefGoogle ScholarPubMed
Slanina, F. Kotrla, M.. Extremal dynamics model on evolving networks . Phys. Rev. Lett., 83 (1999), 5587-5590.CrossRefGoogle Scholar
Solé, R.V., Bascompte, J.. Are critical phenomena relevant to large-scale evolution? Proc. R. Soc. Lond. B, 263 (1996), 161-168. CrossRefGoogle ScholarPubMed
Solé, R.V. Manrubia, S.C.. Extinction and self-organized criticality in a model of large-scale evolution . Phys. Rev. E, 54 (1996), R42-R45.CrossRefGoogle Scholar
Solé, R.V., Manrubia, S.C., Benton, M. Bak, P.. Self-similarity of extinction statistics in the fossil record . Nature, 388 (1997), 764-767.CrossRefGoogle Scholar
Stouffer, D.B., Camacho, J., Guimerà, R., Ng, C.A. Nunes Amaral, L.A.. Quantitative patterns in the structure of model and empirical food webs . Ecology, 86 (2005), 1301-1311.CrossRefGoogle Scholar
Stouffer, D.B., Camacho, J. Nunes Amaral, L.A.. A robust measure of food web intervality . Proc. Nat. Acad. Sci., 103 (2006), 19015-19020.CrossRefGoogle ScholarPubMed
Uchida, S., Drossel, B. Brose, U.. The structure of food webs with adaptive behaviour . Ecol. Mod., 206 (2007), 263-276.CrossRefGoogle Scholar
Warren, P.H., Lawton, J.H.. Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia, 74 (1987), 231-235. CrossRefGoogle ScholarPubMed
White, E.P., Enquist, B.J. Green, J.L.. On estimating the exponent of power-law frequency distributions . Ecology, 89 (2008), 905-912.CrossRefGoogle ScholarPubMed
Williams, R.J. Martinez, N.D.. Simple rules yield complex food webs . Nature, 404 (2000), 180-183.CrossRefGoogle ScholarPubMed
Williams, R.J. Martinez, N.D.. Success and its limits among structural models of complex food webs . J. Anim. Ecol., 77 (2008), 512-519.CrossRefGoogle ScholarPubMed