Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T13:09:06.487Z Has data issue: false hasContentIssue false

Homogenization Approach to Water Transport in Plant Tissueswith Periodic Microstructures

Published online by Cambridge University Press:  10 July 2013

A. Chavarría-Krauser
Affiliation:
Center for Modelling and Simulation in the Biosciences & Interdisciplinary Center for Scientific Computing, Universität Heidelberg, INF 368, 69120 Heidelberg, Germany
M. Ptashnyk*
Affiliation:
Department of Mathematics, University of Dundee, Old Hawkhill, Dundee DD1 4HN Scotland, UK Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics Naukova 3b, Lviv, Ukraine
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Water flow in plant tissues takes place in two different physical domains separated bysemipermeable membranes: cell insides and cell walls. The assembly of all cell insides andcell walls are termed symplast and apoplast,respectively. Water transport is pressure driven in both, where osmosis plays an essentialrole in membrane crossing. In this paper, a microscopic model of water flow and transportof an osmotically active solute in a plant tissue is considered. The model is posed on thescale of a single cell and the tissue is assumed to be composed of periodicallydistributed cells. The flow in the symplast can be regarded as a viscous Stokes flow,while Darcy’s law applies in the porous apoplast. Transmission conditions at the interface(semipermeable membrane) are obtained by balancing the mass fluxes through the interfaceand by describing the protein mediated transport as a surface reaction. Applyinghomogenization techniques, macroscopic equations for water and solute transport in a planttissue are derived. The macroscopic problem is given by a Darcy law with a force termproportional to the difference in concentrations of the osmotically active solute in thesymplast and apoplast; i.e. the flow is also driven by the local concentration differenceand its direction can be different than the one prescribed by the pressure gradient.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acerbi, E., Chiado Piat, V., Dal Maso, G., Percivale, D.. An extension theorem from connected sets, and homogenization in general periodic domains. Nonlin. Anal. Theory, Methods, Applic., 18 (1992), 481496. CrossRefGoogle Scholar
Allaire, G.. Homogenization and two-scale convergence. SIAM J. Math. Anal., 23 (1992), 14821518. CrossRefGoogle Scholar
Allaire, G.. Homogenization of the Stokes flow in a connected porous medium. Asymptotic Anal., 2 (1989), 203222. Google Scholar
Arbogast, T., Lehr, H.. Homogenization of a Darcy-Stokes system modeling vuggy porous media. Computat. Geosci., 10 (2006), 291302. CrossRefGoogle Scholar
V. Calvez, J.G. Houot, N. Meunier, A. Raoult, G. Rusnakova. Mathematical and numerical modeling of early atherosclerotic lesions. ESAIM Proc., (2010), 1–18.
Chavarría-Krauser, A., Jäger, W.. Barodiffusion effects in bifurcating capillaries. Comput. Visual. Sci., 13 (2010), 121128. CrossRefGoogle Scholar
Chavarría-Krauser, A., Ptashnyk, M.. Homogenization of long-range auxin transport in plant tissues. Nonlinear Anal. Real World Applic., 11 (2010), 45244532. CrossRefGoogle Scholar
D. Cioranescu, J. Saint Jean Paulin. Homogenization of reticulated structures. Springer, New York, 1999.
D. Cioranescu, P. Donato. An introduction to Homogenization. Oxfor University Press, New York, 1999.
Cioranescu, D., Donato, P., Zaki, R.. The periodic unfolding method in perforated domains. Port. Math., 63 (2006), 467496. Google Scholar
Claus, J., Chavarría-Krauser, A.. Modeling Regulation of Zinc Uptake via ZIP Transporters in Yeast and Plant Roots. PLoS ONE, 7 (2012), e37193. CrossRefGoogle ScholarPubMed
J. Claus, A. Bohmann, A.Chavarría-Krauser. Zinc Uptake and Radial Transport in Roots of Arabidopsis thaliana: A Modelling Approach to Understand Accumulation. Ann. Bot.-London, doi: 10.1093/aob/mcs263.
Claus, J., Chavarría-Krauser, A.. Implications of a zinc uptake and transport model. Plant Sig. Behav., 8 (2013), e24167. CrossRefGoogle Scholar
K. Esau. Anatomy of seed plant. Wiley, 1977.
Galvis, J., Sarkis, M.. Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Elect. Trans. Numer. Ana., 26 (2007), 350384. Google Scholar
V. Giovangigli. Multicomponent flow modeling. Birkhäuser, 1999.
V. Girault, P.-A. Raviart. Finite element methods for Navier-Stokes equations: Theory and algorithms. Springer, Berlin Heidelberg, 1986.
van den Honert, T.H.. Water transport in plants as a catenary process. Discuss. Faraday Soc., 3 (1948), 146153. CrossRefGoogle Scholar
U. Hornung. Homogenization and porous media. Springer-Verlag, 1997.
Javot, H., Maurel, C.. The role of aquaporins in root water uptake. Ann. Bot.-London, 90 (2002), 301313. CrossRefGoogle ScholarPubMed
Jäger, W., Mikelic, A.. On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl.Math., 60 (2000), 11111127. Google Scholar
O.A. Ladyzenskaja, V.A Solonnikov, N.N. Uralceva. Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society, 1968.
L.D. Landau, E.M. Lifschitz. Statistische Physik. Akademie Verlag, 1987.
L.D. Landau, E.M. Lifschitz. Hydrodynamik. Akademie Verlag, 1991.
Layton, W.J., Schieweck, F., Yotov, I.. Coupling fluid flow with porous media flow. SIAM J. Numer. Anal., 40 (2003), 21952218. CrossRefGoogle Scholar
Lipton, R., Avellaneda, M.. Darcy’s law for slow viscous flow past a stationary array of bubbles. Proc. Royal Soc. Edinburgh, 114A (1990), 7179. CrossRefGoogle Scholar
Marciniak-Czochra, A., Ptashnyk, M.. Derivation of a macroscopic receptor-based model using homogenisation techniques. SIAM J. Math. Anal., 40 (2008), 215237. CrossRefGoogle Scholar
Neuss-Radu, M.. Some extensions of two-scale convergence. C. R. Acad. Sci. Paris, 332 (1996), 899904. Google Scholar
Nguetseng, G.. A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal., 20 (1989), 608623. CrossRefGoogle Scholar
Ni, X.Y., Drengstig, T., Ruoff, P.. The Control of the Controller: Molecular Mechanisms for Robust Perfect Adaptation and Temperature Compensation. Biophys. J., 97 (2009), 12441253. CrossRefGoogle ScholarPubMed
P. Nobel. Physicochemical & Environmental Plant Physiology. Academic Press, 1999.
Prosi, M., Zunino, P., Perktold, K., Quarteroni, A.. Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J. Biomech., 38 (2005), 903917. CrossRefGoogle ScholarPubMed
Ptashnyk, M.. Derivation of a macroscopic model for nutrient uptake by a single branch of hairy-roots. Nonlinear Anal. Real World Applic., 11 (2010), 45864596. CrossRefGoogle Scholar
Quarteroni, A., Discacciati, M.. Navier-Stokes/Darcy Coupling: Modeling, Analysis, and Numerical Approximation. Rev. Mat. Comput., 22 (2009), 315426. Google Scholar
Steudle, E., Peterson, C.A.. How does water get through roots? J. Exp. Bot., 49 (1998), 775788. Google Scholar
Steudle, E.. Water uptake by plant roots: an integration of views. Plant Soil, 226 (2000), 4556. CrossRefGoogle Scholar
Sun, N., Wood, N.B., Hughes, A.D., Thom, S.A.M., Xu, X.Y.. Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. Am. J. Physiol. Heart. Circ. Physiol., 292 (2007), H3148H3157. CrossRefGoogle Scholar
L. Tartar. Incompressible fluid flow in a porous medium - convergence of the homogenization process. Appendix in Lecture Notes in Physics 127, Springer, Berlin, 1980.
R. Temam. Navier-Stokes equations. North-Holland, Amsterdam, 1978.
Tyree, M. T.. The Thermodynamics of Short-distance Translocation in Plants. J. Exp. Bot., 20 (1969), 341349. CrossRefGoogle Scholar
Tyree, M. T.. The Cohension-Tension theory of sap ascent: current controversies. J. Exp. Bot, 48 (1997), 17531765. Google Scholar
Vailati, A., Giglio, M.. Nonequilibrium fluctuations in time-dependent diffusion processes. Phys. Rev. E, 58 (1998), 43614371. CrossRefGoogle Scholar
Vos, J., Evers, J.B., Buck-Sorlin, G.H., Andrieu, B., Chelle, M., de Visser, P.H.B.. Functional-structural plant modelling: a new versatile tool in crop science. J. Exp. Botany, 61 (2010), 21012115. CrossRefGoogle Scholar