Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T07:23:11.811Z Has data issue: false hasContentIssue false

Hematologic Disorders and Bone Marrow–Peripheral BloodDynamics

Published online by Cambridge University Press:  28 April 2010

E. Afenya
Affiliation:
Department of Mathematics, Elmhurst College, 60126 Elmhurst, USA
S. Mundle*
Affiliation:
Department of Biochemistry, Rush University Medical Center, 60565 Naperville, USA
*
* Corresponding author. E-mail: [email protected]
Get access

Abstract

Hematologic disorders such as the myelodysplastic syndromes (MDS) are discussed. Thelingering controversies related to various diseases are highlighted. A simplebiomathematical model of bone marrow - peripheral blood dynamics in the normal state isproposed and used to investigate cell behavior in normal hematopoiesis from a mathematicalviewpoint. Analysis of the steady state and properties of the model are used to makepostulations about the phenomenon of massive apoptosis in MDS. Simulations of the modelshow situations in which homeostatic equilibrium can be achieved and maintained.Consequently, it is postulated that hematopoietic growth factors may possess thecapabilities of preventing oscillatory dynamics and enhancing faster evolution towardshomeostatic equilibrium.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Raza, A., Gezer, S., Mundle, S., Gao, X., Alvi, S., Borok, R., Rifkin, S., Iftikhar, A., Shetty, V., Parcharidou, A., Loew, J., Marcus, B., Khan, Z., Chaney, C., Showel, J., Gregory, S., Preisler, H.. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes . Blood, 86 (1995), No. 1, 268276.Google ScholarPubMed
Fokas, A., Keller, J., Clarkson, B.. Mathematical model of granulocytopoiesis and chronic myelogenous leukemia . Can. Res., 51 (1991), 2084.Google ScholarPubMed
Parcharidou, A., Raza, A., Economopoulos, T., Papageorgiou, E., Anagnostou, D., Papadaki, T., Raptis, S.. Extensive apoptosis of bone marrow cells as evaluated by the in situ end-labelling (ISEL) technique may be the basis for ineffective hematopoiesis in patients with myelodysplastic syndromes . Eur. J. Haemat., 62 (1999), 1926.CrossRefGoogle ScholarPubMed
Raza, A., Mundle, S., Iftikhar, A., Gregory, S., Marcus, B., Khan, Z., Alvi, S., Shetty, V., Dameron, S., Wright, V., Adler, S., Loew, J., Shott, S., Ali, S., Preisler, H.. Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis . Amer. J. Hematol., 48 (1995), 143154.CrossRefGoogle ScholarPubMed
Djulbegovic, B., Svetina, S.. Mathematical model of acute myeloblastic leukaemia: an investigation of relevant kinetic parameters . Cell Tissue Kinet., 18 (1985), 307319.Google ScholarPubMed
Lord, B., Gurney, H., Chang, J., Thatcher, N., Crowther, D., Dexter, T.. Haemopoietic cell kinetics in humans treated with RGM-CSF . Int. J. Cancer, 50 (1992), 2631.CrossRefGoogle ScholarPubMed
Lord, B., Testa, N., Bretti, S., Chang, J., Demuynck, H., Coutinho, L., Campos, E., Fitzsimmons, L., Scarffe, H.. Haemopoietic progenitor and myeloid cell kinetics in humans treated with interleukin-3 and granulocyte/macrophage colony-stimulating factor in combination . Int. J. Cancer, 59 (1994), 483490.CrossRefGoogle ScholarPubMed
B. Lowenberg, J. Griffin, M. Tallman. Acute myeloid leukemia and acute promyelocytic leukemia. Amer. Soc. Hematol., 2003
Bouscary, D., Vos, J., Guesnu, M., Jondeau, K., Viguier, F., Melle, J., Picard, F., Dreyfus, F., Fontenay-Roupie, M.. Fas/Apo-1 (cd95) expression and apoptosis in patients with myelodysplastic syndromes . Leuk., 11 (1997), 839845.CrossRefGoogle ScholarPubMed
Dale, D., Liles, W., Llewellyn, C., Price, T.. Effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on neutrophil kinetics and function in normal human volunteers . Amer. J. Hematol., 57 (1998), 715.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Steensma, D., Tefferi, A.. The myelodysplastic syndrome(s): a perspective and review highlighting current controversies . Leuk. Res., 27 (2003), 95120.CrossRefGoogle ScholarPubMed
Afenya, E., Calderon, C.. Normal cell decline and inhibition in acute leukemia: a biomathematical modeling approach . J. Can. Det. Prev., 20 (1996), No. 3, 171179.Google ScholarPubMed
Afenya, E.. Acute leukemia and chemotherapy: a modeling viewpoint . Math. Biosci., 138 (1996), 79100.CrossRefGoogle ScholarPubMed
Hellstrom-Lindberg, E., Kanter-Lewensohn, L., Ost, A.. Morphological changes and apoptosis in bone marrow from patients with myelodysplastic syndromes treated with granulocyte-CSF and erythropoietin . Leuk. Res., 21(1997), No. 5, 415425. CrossRefGoogle ScholarPubMed
Hofer, E., Brucher, S., Mehr, K., Tibken, B.. An approach to a biomathematical model lymphocytopoiesis . Stem Cells, 13 (1995), No. 1, 290300.CrossRefGoogle ScholarPubMed
H. Foerster. Some remarks on changing populations. In: The Kinetics of Cellular Proliferation (F. Stohlman, Jr., ed.), Grune and Stratton, p. 382, New York, 1959.
Wichmann, H., Loeffler, M., schmitz, S.. A concept of hemopoeitic regulation and its biomathematical realization . Blood Cells, 14 (1988), 411.Google Scholar
Roeder, I., Herberg, M., Horn, M.. An "age"-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia . Bull. Math. Biol., 71 (2009), 602626.CrossRefGoogle Scholar
Anderson, J., Appelbaum, F., Fisher, L., Stoch, G., Shulman, H., Anasetti, C., Bensinger, W., Bryant, E., Buckner, C., Doney, K., Martin, P., Sanders, J., Sullivan, K., Thomas, E., Witherspoon, R., Hansen, J., Storb, R.. Allogeneic bone marrow transplantation for 93 patients with myelodysplastic syndromes . Blood, 82 (1993), 677.Google Scholar
Parker, J., Mufti, G., Rasool, F., Mijovic, A., Devereux, S., Pagliuca, A.. the role of apoptosis, proliferation, and bcl-2 related proteins in myelodysplastic syndromes and acute myeloid leukemia secondary to MDS . Blood, 96 (2000), No. 12, 39323938.Google ScholarPubMed
Hara, K., Yasunobu, A., Hirase, N., Shiratsuchi, M., Kihara, T., Nishimura, J., Nawata, H., Muta, K.. Apoptosis resistance of mature neutrophils in a case of chronic neutrophilic leukaemia . Eur. J. Haematol., 66 (2001), 7071. CrossRefGoogle Scholar
Shimazaki, K., Oshima, K., Suzumiya, J., Kawasaki, C., Kikuchi, M.. Evaluation of apoptosis as a prognostic factor in myelodysplastic syndromes . Br. J. Haemat., 110 (2000), 584590.CrossRefGoogle ScholarPubMed
L. Glass, M. Mackey. From clocks to chaos. Princeton University Press, Princeton, 1988.
Aljurf, M., Zaidi, S.. Chemotherapy and hematopoietic stem cell transplantation for adult T-cell lymphoblastic lymphoma: current status and controversies . Biol. Blood Marrow Transplant. 11 (2005), No. 10, 739754.CrossRefGoogle ScholarPubMed
Mackey, M., Glass, L.. Oscillation and chaos in physiological control systems . Science, 197 (1977), 287289.CrossRefGoogle ScholarPubMed
Mackey, M.. Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis . Blood, 51 (1978), No. 5, 941956.Google ScholarPubMed
Kazarinoff, N., denDriessche, P.. Control of oscillations in hematopoiesis . Science, 203 (1979), 13481349.CrossRefGoogle ScholarPubMed
Marer, N., Skacel, P.. Up-regulation of 2,6 sialylation during myeloid maturation: a potential role in myeloid cell release from the bone marrow . J. Cell. Phy., 179 (1999), 315324.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Scherbaum, O., Rasch, G.. cell size distribution and single cell growth in Tetrahymena Pyriformis GL . Acta Pathol. Microbiol. Scand., 41 (1957), 161.Google ScholarPubMed
Lepelley, P., Campergue, L., Grardel, N. , Preudhomme, C., Cosson, A., Fenaux, P.. Is apoptosis a massive process in myelodysplastic syndromes ? Brit.J. Haematol., 95 (1996), 368371. CrossRefGoogle ScholarPubMed
Stone, R., Sekeres, M., Garcia-Maneros, G., Lyons, R.. Recent advances in low- and intermediate-1-risk myelodysplastic syndrome: developing a consensus for optimal therapy . Clin. Adv. Hematol. Oncol., 6 (2008), No. 12, 115.Google ScholarPubMed
Khan, S., Raza, A., Barcos, M., Yousuf, N., Saikia, T., Masterson, M., Bennett, J., Browman, G., Goldberg, J., Grunwald, H., Larson, R., Sandberg, A., Vogler, R., Preisler, H.. Cell cycle and clinical characteristics of patients with acute myeloid leukemia and myelodysplasia whose biopsies are reactive with anti-factor VIII antibody . Leuk. Res., 15 (1991), No. 1, 5157.CrossRefGoogle ScholarPubMed
Mundle, S., Venugopal, P., Cartlidge, J., Pandav, D., Broady-Robinson, L., Gezer, S., Robin, E., Rifkin, S., Klein, M., Alston, D., Hernandez, B., Rosi, D., Alvi, S., Shetty, V., Gregory, S., Raza, A.. Indication of an involvement of interleukin-1 converting enzyme-like protease in intramedullary apoptotic cell death in the bone marrow of patients with myelodysplastic syndromes . Blood, 88 (1996), No. 7, 26402647.Google ScholarPubMed
S. Mundle, V. Shetty, A. Raza. Caspases and apoptosis in myelodysplastic syndromes. Letters to the Editor/Exp. Hematol., (2000), 1–2.
Mundle, S.. Lingering dilemmas about the status of progenitor cells in myelodysplasia . Arch. Med. Res., 34 (2003), 515519.CrossRefGoogle ScholarPubMed
Rubinow, S., Lebowitz, J.. A mathematical model of neutrophil production and control in normal man . J. Math. Biol., 1 (1975), 187225.CrossRefGoogle ScholarPubMed
Rubinow, S., Lebowitz, J.. A mathematical model of the acute myeloblastic leukemic state in man . Biophys. J., 16 (1976), 897910.CrossRefGoogle ScholarPubMed
Schmitz, S., Franke, H., Brusis, J., Wichmann, H.. 1993 Quantification of the cell kinetic effects of G-CSF using a model of human granulopoiesis . Exp. Hematol., 21 (1993), 755760.Google ScholarPubMed
Schrier, S.. Hematopoiesis and red blood cell function . Sci. Am. Med., I (1988), 28. Google Scholar
Price, T., Chatta, G., Dale, D.. Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans . Blood, 88 (1996), No. 1, 335340.Google Scholar
Creutzig, U., Reinhardt, D., Zimmermann, M., Klingebiel, T., Gadner, H.. Intensive chemotherapy versus bone marrow transplantation in pediatric acute myeloid leukemia: a matter of controversies . Blood, 97 (2001), No. 11, 36713672.CrossRefGoogle ScholarPubMed
Shetty, V., Hussaini, S., Broady-Robinson, L., Allampallam, K., Mundle, S., Borok, R., Broderick, E., Mazzoran, L., Zorat, F., Raza, A.. Intramedullary apoptosis of hematopoietic cells in myelodysplastic syndrome patients can be massive: apoptotic cells recovered from high-density fraction of bone marrow aspirates . Blood, 96 (2000), No. 4, 13881392.Google ScholarPubMed
W. Stock. Controversies in the treatment of AML: case-based discussion. Amer. Soc. Hematol., 2006