Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T09:26:29.655Z Has data issue: false hasContentIssue false

Epidemiological Models and Lyapunov Functions

Published online by Cambridge University Press:  15 June 2008

A. Fall
Affiliation:
INRIA Lorraine & Université Paul Verlaine, Metz LMAM (UMR CNRS 7122) I.S.G.M.P. Bât A, Ile du Saulcy, 57045 Metz Cedex 01, France Université de Saint-Louis, Sénégal
A. Iggidr
Affiliation:
INRIA Lorraine & Université Paul Verlaine, Metz LMAM (UMR CNRS 7122) I.S.G.M.P. Bât A, Ile du Saulcy, 57045 Metz Cedex 01, France
G. Sallet*
Affiliation:
INRIA Lorraine & Université Paul Verlaine, Metz LMAM (UMR CNRS 7122) I.S.G.M.P. Bât A, Ile du Saulcy, 57045 Metz Cedex 01, France
J. J. Tewa
Affiliation:
INRIA Lorraine & Université Paul Verlaine, Metz LMAM (UMR CNRS 7122) I.S.G.M.P. Bât A, Ile du Saulcy, 57045 Metz Cedex 01, France Université de Yaoundé, Cameroun
Get access

Abstract

We give a survey of results on global stability for deterministic compartmental epidemiologicalmodels. Using Lyapunov techniques we revisit a classical result, and give a simple proof.By the same methods we also give a new result on differential susceptibility and infectivity modelswith mass action and an arbitrary number of compartments. These models encompass the so-calleddifferential infectivity and staged progression models. In the two cases we prove that if the basicreproduction ratio $\mathcal{R}_0$ 1, then the disease free equilibrium is globally asymptotically stable. If $\mathcal{R}_0$ > 1, there exists an unique endemic equilibrium which is asymptotically stable on the positive orthant.

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)